| 注册
首页|期刊导航|中国石油大学学报(自然科学版)|地震属性驱动的条件生成对抗网络沉积微相模型构建

地震属性驱动的条件生成对抗网络沉积微相模型构建

刘昕 孙胜 张立强 蔡明俊 鲁玉 卢文娟

中国石油大学学报(自然科学版)2025,Vol.49Issue(4):1-10,10.
中国石油大学学报(自然科学版)2025,Vol.49Issue(4):1-10,10.DOI:10.3969/j.issn.1673-5005.2025.04.001

地震属性驱动的条件生成对抗网络沉积微相模型构建

Construction of sedimentary microfacies model based on conditional generative adversarial network

刘昕 1孙胜 1张立强 1蔡明俊 2鲁玉 1卢文娟1

作者信息

  • 1. 中国石油大学(华东)青岛软件学院、计算机科学与技术学院,山东 青岛 266580
  • 2. 中国石油大港油田公司,天津 300380
  • 折叠

摘要

Abstract

Due to the complexity and strong heterogeneity of stratigraphic structure,as well as the limited availability of log-ging,core,and oil testing data,existing sedimentary microfacies modeling methods struggle to achieve accurate results.To address this challenge,a new modeling approach based on conditional generative adversarial networks(cGANs)was pro-posed.This method utilizes grey correlation analysis to calculate the degree of correlation between various seismic attributes and the sand-to-ground ratio,thereby identifying attributes with strong predictive relevance.These selected seismic attribute images are then used as inputs to a convolutional neural network,which is employed to construct a prediction model for the sand-to-ground ratio.The resulting predictions are visualized as a thermal map,which,combined with well log phase dia-grams,serves as a joint constraint for training the generative adversarial network.Based on this,a sedimentary microfacies generation model is developed to enable accurate modeling of sedimentary microfacies.This method was applied to a case study of an oilfield in eastern China.The results demonstrate that the cGAN-based model can effectively capture complex ge-ological patterns,achieving a well-point coincidence rate of 94.1%.

关键词

条件生成对抗网络/深度学习/沉积微相/砂地比/灰色关联/卷积神经网络

Key words

conditional generative adversarial network/deep learning/sedimentary microfacies/sand-to-ground ratio/grey correlation/convolutional neural network

分类

信息技术与安全科学

引用本文复制引用

刘昕,孙胜,张立强,蔡明俊,鲁玉,卢文娟..地震属性驱动的条件生成对抗网络沉积微相模型构建[J].中国石油大学学报(自然科学版),2025,49(4):1-10,10.

基金项目

山东省自然科学基金项目(ZR2024MF037) (ZR2024MF037)

中国石油大学学报(自然科学版)

OA北大核心

1673-5005

访问量4
|
下载量0
段落导航相关论文