| 注册
首页|期刊导航|中国石油大学学报(自然科学版)|基于压缩感知的快速Bregman地震数据重建方法

基于压缩感知的快速Bregman地震数据重建方法

孙小东 李傲伟 秦宁 蒋润 王敬伊 赵亮 孙耀庭

中国石油大学学报(自然科学版)2025,Vol.49Issue(4):62-68,7.
中国石油大学学报(自然科学版)2025,Vol.49Issue(4):62-68,7.DOI:10.3969/j.issn.1673-5005.2025.04.006

基于压缩感知的快速Bregman地震数据重建方法

Reconstruction of seismic data with fast Bregman based on compressed sensing

孙小东 1李傲伟 1秦宁 2蒋润 1王敬伊 1赵亮 1孙耀庭3

作者信息

  • 1. 深层油气全国重点实验室(中国石油大学(华东)),山东 青岛 266580||中国石油大学(华东)地球科学与技术学院,山东 青岛 266580
  • 2. 中国石化胜利油田物探研究院,山东 东营 257022
  • 3. 山东航空学院智能建造学院,山东 滨州 256600
  • 折叠

摘要

Abstract

Due to factors such as ground environment,equipment limitations,and costs,seismic data collected in the field often suffer from missing traces.Therefore,the rapid and effective reconstruction of missing seismic data is crucial.To ad-dress this issue,we propose a seismic data reconstruction method based on compressed sensing theory,utilizing a fast Breg-man approach with multiscale and multidirectional curvelet transforms as the sparse basis.The Bregman method decomposes the solution of the L1-norm minimization problem into a series of subproblems,which are efficiently and accurately solved u-sing the fast iterative shrinkage-thresholding algorithm(FISTA),thereby achieving high-quality reconstruction of missing da-ta.Experimental results demonstrate that the fast Bregman method based on compressed sensing can efficiently reconstruct complex synthetic seismic data and enhance the accuracy of iterative computations.Complared to LBM and FISTA methods,the proposed method achieves superior performance in both reconstruction efficiency and accuracy.

关键词

地震数据重建/压缩感知/快速Bregman方法/快速迭代收缩阈值/曲波变换

Key words

seismic data reconstruction/compressed sensing/fast Bregman method/fast iterative shrinkage thresholding al-gorithm/curvelet transform

分类

天文与地球科学

引用本文复制引用

孙小东,李傲伟,秦宁,蒋润,王敬伊,赵亮,孙耀庭..基于压缩感知的快速Bregman地震数据重建方法[J].中国石油大学学报(自然科学版),2025,49(4):62-68,7.

基金项目

中央高校基本科研业务费专项(24CX02010A) (24CX02010A)

山东省泰山产业领军人才课题(tscx202312059) (tscx202312059)

山东省自然科学基金项目(ZR2021MD056) (ZR2021MD056)

中国石油大学学报(自然科学版)

OA北大核心

1673-5005

访问量0
|
下载量0
段落导航相关论文