| 注册
首页|期刊导航|微型电脑应用|多尺度加权特征融合下高速公路信息网络安全风险识别

多尺度加权特征融合下高速公路信息网络安全风险识别

陈婧

微型电脑应用2025,Vol.41Issue(5):33-37,5.
微型电脑应用2025,Vol.41Issue(5):33-37,5.

多尺度加权特征融合下高速公路信息网络安全风险识别

Risk Identification of Highway Information Network Security under Multi-scale Weighted Feature Fusion

陈婧1

作者信息

  • 1. 云南公路联网收费管理有限公司,安全监管部,云南,昆明 650228
  • 折叠

摘要

Abstract

The highway information network contains important information of different scales such as traffic flow,accident re-cords and road conditions.Judging risks through a single feature cannot obtain comprehensive information,resulting in limited coverage rate of risk identification.In order to improve the coverage rate of risk identification,a multi-scale weighted feature fusion method for highway information network security risk identification is proposed.The method collects highway informa-tion network data through crawler technology,processes the data by multi-scale weighted feature fusion methods,and establi-shes association rules and risk identification functions based on the feature fusion results to determine the security risks of high-way information data.The experimental results show that the proposed method has a risk identification coverage rate of over 97%,which can complete the risk identification of highway information network,and the identification results are relatively ac-curate.

关键词

高速公路信息/爬虫技术/多尺度加权特征融合/关联规则/风险识别

Key words

highway information/crawler technology/multi-scale weighted feature fusion/association rule/risk identification

分类

信息技术与安全科学

引用本文复制引用

陈婧..多尺度加权特征融合下高速公路信息网络安全风险识别[J].微型电脑应用,2025,41(5):33-37,5.

基金项目

云南省数字交通重点实验室(202205AG070008) (202205AG070008)

微型电脑应用

1007-757X

访问量0
|
下载量0
段落导航相关论文