| 注册
首页|期刊导航|现代电子技术|基于集成学习的交通事故严重程度预测

基于集成学习的交通事故严重程度预测

贾现广 宋腾飞 吕英英

现代电子技术2025,Vol.48Issue(16):61-66,6.
现代电子技术2025,Vol.48Issue(16):61-66,6.DOI:10.16652/j.issn.1004-373x.2025.16.011

基于集成学习的交通事故严重程度预测

Traffic accident severity prediction based on ensemble learning

贾现广 1宋腾飞 1吕英英2

作者信息

  • 1. 昆明理工大学 交通工程学院,云南 昆明 650500
  • 2. 昆明理工大学 信息工程与自动化学院,云南 昆明 650500
  • 折叠

摘要

Abstract

In order to improve the performance of road traffic accident severity prediction models and analyze the impact of accident features on accident severity,a method of traffic accident severity prediction based on a double-layer Stacking model is proposed.The BSMOTE2 algorithm is used to balance the data and verify whether data balancing processing will have a positive impact on model prediction.The GBDT-RFECV algorithm is used for k-fold cross validation selection to complete the feature dimensionality reduction.A two-layer Stacking model is built.The first layer is composed of BiGRU and XGBoost,using time series features for BiGRU and static features for XGBoost for the preliminary prediction.The CatBoost model is used at the second layer and combined with the prediction results of the first layer for the final severity prediction.The research results indicate that the accuracy of the model,macro F1,and macro AUC have all improved significantly,indicating that data balance processing has a positive impact on model prediction.In comparison with KNN,BiGRU,RF,and XGBoost models,the proposed double-layer Stacking model can improve prediction accuracy by 5.45%,10.23%,1.78%,and 2.34%,respectively,the macro F1 value can be increased by 5.31%,9.91%,1.35%,and 1.92%,respectively,and the macro AUC can be increased by 11.13%,6.97%,2.13%,and 2.71%,respectively.The double-layer Stacking model can perform better than other models on multiple evaluation metrics.

关键词

交通安全/交通事故预测/预测分析/集成学习/机器学习/深度学习/特征降维

Key words

traffic safety/traffic accident severity/predictive analysis/ensemble learning/machine learning/deep learning/feature dimensionality reduction

分类

信息技术与安全科学

引用本文复制引用

贾现广,宋腾飞,吕英英..基于集成学习的交通事故严重程度预测[J].现代电子技术,2025,48(16):61-66,6.

基金项目

国家自然科学基金项目(71961012) (71961012)

现代电子技术

OA北大核心

1004-373X

访问量0
|
下载量0
段落导航相关论文