| 注册
首页|期刊导航|智能系统学报|基于分层多智能体强化学习的多无人机视距内空战

基于分层多智能体强化学习的多无人机视距内空战

雍宇晨 李子豫 董琦

智能系统学报2025,Vol.20Issue(3):548-556,9.
智能系统学报2025,Vol.20Issue(3):548-556,9.DOI:10.11992/tis.202408008

基于分层多智能体强化学习的多无人机视距内空战

Multi-UAV within-visual-range air combat based on hierarchical multiagent reinforcement learning

雍宇晨 1李子豫 2董琦3

作者信息

  • 1. 东南大学软件学院,江苏南京 211189||中国电科电子科学研究院,北京 100041
  • 2. 东南大学信息科学与工程学院,江苏南京 210096
  • 3. 中国电科电子科学研究院,北京 100041
  • 折叠

摘要

Abstract

To improve the autonomous maneuvering decision-making capabilities of unmanned aerial vehicles(UAVs)in within-visual-range air combat,a hierarchical decision network framework based on self-play theory(SP)and multia-gent reinforcement learning(MARL)is proposed in this paper.A multi-UAV dogfight scenario is studied by combining SP and an MARL algorithm.The complex air combat task is divided into upper-level missile strike tasks and lower-level flight tracking tasks,which effectively reduces the fuzziness of tactical action and improves the autonomous maneuver-ing decision-making ability in a multi-UAV dogfight scenario.In addition,through an innovative reward function design and by adopting the SP method,the algorithm reduces the meaningless exploration of an agent due to the large battle-field environment.Simulation results show that this algorithm can help agents learn basic flight tactics and advanced combat tactics and has better defensive and offensive capabilities compared with other multiagent air combat algorithms.

关键词

视距内空战/缠斗/自主机动决策/自博弈/分层强化学习/多智能体博弈/分层决策网络/奖励函数设计

Key words

air combat within visual range/dogfight/autonomous decision-making/self-play/hierarchical reinforce-ment learning/multi-intelligent body game/hierarchical decision networks/reward function design

分类

信息技术与安全科学

引用本文复制引用

雍宇晨,李子豫,董琦..基于分层多智能体强化学习的多无人机视距内空战[J].智能系统学报,2025,20(3):548-556,9.

智能系统学报

OA北大核心

1673-4785

访问量1
|
下载量0
段落导航相关论文