| 注册
首页|期刊导航|智能系统学报|基于自优化神经网络的船舶运动模型辨识

基于自优化神经网络的船舶运动模型辨识

张浩晢 杨智博 焦绪国 吕成兴 朱齐丹

智能系统学报2025,Vol.20Issue(3):571-583,13.
智能系统学报2025,Vol.20Issue(3):571-583,13.DOI:10.11992/tis.202408004

基于自优化神经网络的船舶运动模型辨识

Identification of ship motion model based on self-optimizing neural network

张浩晢 1杨智博 1焦绪国 1吕成兴 1朱齐丹2

作者信息

  • 1. 青岛理工大学信息与控制工程学院,山东青岛 266520
  • 2. 哈尔滨工程大学智能科学与工程学院,黑龙江哈尔滨 150001
  • 折叠

摘要

Abstract

An accurate ship motion model stands as the cornerstone of autonomous ship systems.To enhance the preci-sion of ship motion modeling,an improved snow ablation optimizer(ISAO)is first introduced.Subsequently,a network model,BITCA,which integrates a bidirectional temporal convolutional network(Bi-TCN)with the attention mechan-ism(AM),is proposed.Furthermore,by combining the ISAO with BITCA,a hybrid identification model for ship mo-tion,termed ISAO-BITCA,is established.This model initially leverages the Bi-TCN to deeply explore the hidden fea-tures of ship motion sequences across both temporal and spatial dimensions,while introducing the AM to mitigate in-formation loss.Utilizing the ISAO,the hyperparameter combination for the BITCA model is autonomously searched and optimized.Simulation results demonstrate that the BITCA model optimized by the ISAO achieves reductions in the root mean square error for ship heading angle,yaw rate,roll angle,and total speed predictions by 54.1%,28.21%,5.88%,and 40%,respectively,providing an effective means for the accurate identification of ship motion models.

关键词

船舶运动建模/改进雪融优化器/双向时间卷积网络/注意力机制/优化/超参数/预测/辨识

Key words

ship motion modeling/improved snow ablation optimizer/bidirectional temporal convolutional network/at-tention mechanism/optimize/hyperparameter/predict/identification

分类

信息技术与安全科学

引用本文复制引用

张浩晢,杨智博,焦绪国,吕成兴,朱齐丹..基于自优化神经网络的船舶运动模型辨识[J].智能系统学报,2025,20(3):571-583,13.

基金项目

国家自然科学基金项目(62203249,61803220) (62203249,61803220)

山东省重大创新工程项目(2022CXGC010608) (2022CXGC010608)

山东省自然科学基金项目(ZR2021QF115). (ZR2021QF115)

智能系统学报

OA北大核心

1673-4785

访问量0
|
下载量0
段落导航相关论文