| 注册
首页|期刊导航|智能系统学报|高低频特征融合的低照度图像增强方法

高低频特征融合的低照度图像增强方法

王德文 胡旺盛 张润磊 赵文清

智能系统学报2025,Vol.20Issue(3):641-648,8.
智能系统学报2025,Vol.20Issue(3):641-648,8.DOI:10.11992/tis.202405026

高低频特征融合的低照度图像增强方法

Low light image enhancement based on high and low frequency feature fusion

王德文 1胡旺盛 2张润磊 2赵文清3

作者信息

  • 1. 华北电力大学计算机系,河北保定 071003||河北省能源电力知识计算重点实验室,河北保定 071003
  • 2. 华北电力大学计算机系,河北保定 071003
  • 3. 华北电力大学计算机系,河北保定 071003||复杂能源系统智能计算教育部工程研究中心,河北保定 071003
  • 折叠

摘要

Abstract

To address the imbalance between performance and cost in existing low light image enhancement,a low light image enhancement method is proposed based on high and low frequency feature fusion.By integrating multi-scale data,this fusion combines geometrically rich low frequency features with semantically rich high frequency features to obtain enhanced images,thereby reducing cost while guaranteeing good image quality.To enhance the feature extraction abil-ity in a low light environment,the residual mix-attention module is designed to focus more on important local regions from the pixel and channel perspectives.To address the information loss due to downsampling,the feature merging module is used to supplement the features after downsampling.Additionally,a multi-residual dense block module is de-signed to strengthen the feature-reuse capability.Furthermore,the see-in-the-dark dataset was subjected to experiments.Overall,this method achieved peak signal-to-noise ratio and structural similarity of 29.67 and 0.792,respectively,with only 1.5×106 parameters.

关键词

低照度/图像增强/高频特征/低频特征/特征融合/注意力/多尺度/残差网络/密集连接

Key words

low light/image enhancement/high frequency feature/low frequency feature/feature fusion/attention/multi-scale/residual net/dense connection

分类

信息技术与安全科学

引用本文复制引用

王德文,胡旺盛,张润磊,赵文清..高低频特征融合的低照度图像增强方法[J].智能系统学报,2025,20(3):641-648,8.

基金项目

国家自然科学基金项目(62371188). (62371188)

智能系统学报

OA北大核心

1673-4785

访问量0
|
下载量0
段落导航相关论文