| 注册
首页|期刊导航|现代信息科技|基于深度卷积神经网络的植物叶片病变识别系统设计

基于深度卷积神经网络的植物叶片病变识别系统设计

杨学博 商硕 任焕海

现代信息科技2025,Vol.9Issue(13):41-46,6.
现代信息科技2025,Vol.9Issue(13):41-46,6.DOI:10.19850/j.cnki.2096-4706.2025.13.009

基于深度卷积神经网络的植物叶片病变识别系统设计

Design of Plant Leaf Lesion Recognition System Based on Deep Convolutional Neural Network

杨学博 1商硕 1任焕海1

作者信息

  • 1. 山东华宇工学院,山东 德州 253034
  • 折叠

摘要

Abstract

Aiming at the problem that traditional crop disease recognition methods rely on expert knowledge and manual judgment,it is difficult to deal with large-scale data and complex situations.This paper designs and implements an intelligent recognition system for plant leaf lesions based on deep Convolutional Neural Network(CNN).The system uses the Deep Learning model to accurately identify the plant lesion pictures uploaded by users,and displays the recognition results.The system experiments with mainstream CNN models such as ResNet,VGG and Inception,and finally selects the ResNet model for disease recognition.The experimental results show that the system can effectively identify plant leaf lesions and provide a convenient and fast technical means for crop disease diagnosis.

关键词

机器学习/卷积神经网络/植物病变

Key words

Machine Learning/Convolutional Neural Network/plant lesion

分类

信息技术与安全科学

引用本文复制引用

杨学博,商硕,任焕海..基于深度卷积神经网络的植物叶片病变识别系统设计[J].现代信息科技,2025,9(13):41-46,6.

基金项目

德州市大数据与智能感知技术工程研究中心 ()

现代信息科技

2096-4706

访问量0
|
下载量0
段落导航相关论文