| 注册
首页|期刊导航|信息安全研究|基于跨模态注意力机制和弱监督式对比学习的虚假新闻检测模型

基于跨模态注意力机制和弱监督式对比学习的虚假新闻检测模型

蔡松睿 张仕斌 丁润宇 卢嘉中 黄源源

信息安全研究2025,Vol.11Issue(8):693-701,9.
信息安全研究2025,Vol.11Issue(8):693-701,9.DOI:10.12379/j.issn.2096-1057.2025.08.02

基于跨模态注意力机制和弱监督式对比学习的虚假新闻检测模型

Fake News Detection Model Based on Cross-modal Attention Mechanism and Weak-supervised Contrastive Learning

蔡松睿 1张仕斌 2丁润宇 1卢嘉中 2黄源源2

作者信息

  • 1. 成都信息工程大学人工智能学院(芯谷产业学院) 成都 610225||成都信息工程大学网络空间安全学院(芯谷产业学院) 成都 610225||先进密码技术与系统安全四川省重点实验室 成都 610225||先进微处理器技术国家工程研究中心(工业控制与安全分中心) 成都 610225
  • 2. 成都信息工程大学人工智能学院(芯谷产业学院) 成都 610225||成都信息工程大学网络空间安全学院(芯谷产业学院) 成都 610225||先进密码技术与系统安全四川省重点实验室 成都 610225
  • 折叠

摘要

Abstract

With the widespread popularization of the Internet and smart devices,social media has become a major platform for news dissemination.However,it also provides conditions for the widespread of fake news.In the current social media environment,fake news exists in multiple modalities such as text and images,while existing multimodal fake news detection techniques usually fail to fully explore the intrinsic connection between different modalities,which limits the overall performance of the detection model.To address this issue,this paper proposes a hybrid model of cross-modal attention mechanism and weak-supervised contrastive learning(CMAWSCL)for fake news detection.The model utilizes pre-trained BERT and ViT models to extract text and image features respectively,and effectively fuses multimodal features through the cross-modal attention mechanism.At the same time,the model introduces weak-supervised contrast learning,which utilizes the prediction results of effective modalities as supervisory signals to guide the contrast learning process.This approach can effectively capture and utilize the complementary information between text and image,thus enhancing the performance and robustness of the model in multimodal environments.Simulation experiments show that the CMAWSCL performs well on the publicly available Weibo17 and Weibo21 datasets,with an average improvement of 1.17 percentage points in accuracy and 1.66 percentage points in F1 score compared to the current state-of-the-art methods,which verifies its effectiveness and feasibility in coping with the task of multimodal fake news detection.

关键词

虚假新闻检测/多模态融合/跨模态注意力机制/对比学习/深度学习

Key words

fake news detection/multi-modal fusion/cross-modal attention mechanism/contrastive learning/deep learning

分类

信息技术与安全科学

引用本文复制引用

蔡松睿,张仕斌,丁润宇,卢嘉中,黄源源..基于跨模态注意力机制和弱监督式对比学习的虚假新闻检测模型[J].信息安全研究,2025,11(8):693-701,9.

基金项目

国家重点研发计划项目(2022YFB3103103) (2022YFB3103103)

成都市重点研发项目(2023-XT00-00002-GX) (2023-XT00-00002-GX)

成都市重点研发支撑计划项目(2024-YF05-01227-SN) (2024-YF05-01227-SN)

信息安全研究

OA北大核心

2096-1057

访问量0
|
下载量0
段落导航相关论文