| 注册
首页|期刊导航|移动通信|大语言模型驱动的无线通信物理层任务智能处理技术综述

大语言模型驱动的无线通信物理层任务智能处理技术综述

王文 孙亚萍 许晓东 何业军 陈昊 马楠 崔曙光

移动通信2025,Vol.49Issue(7):21-30,10.
移动通信2025,Vol.49Issue(7):21-30,10.DOI:10.3969/j.issn.1006-1010.20250520-0002

大语言模型驱动的无线通信物理层任务智能处理技术综述

A Survey of LLM-Driven Intelligent Processing for Physical-Layer Tasks in Wireless Communication

王文 1孙亚萍 2许晓东 3何业军 4陈昊 5马楠 3崔曙光6

作者信息

  • 1. 鹏城实验室,广东 深圳 518000||深圳大学,广东 深圳 518060
  • 2. 鹏城实验室,广东 深圳 518000||香港中文大学(深圳),广东 深圳 518172
  • 3. 北京邮电大学,北京 100876||鹏城实验室,广东 深圳 518000
  • 4. 深圳大学,广东 深圳 518060
  • 5. 鹏城实验室,广东 深圳 518000
  • 6. 香港中文大学(深圳),广东 深圳 518172
  • 折叠

摘要

Abstract

6G aims to build intrinsically intelligent networks,with the physical layer facing multiple challenges such as high-frequency channel modeling,ultra-large-scale antenna array optimization,and dynamic task adaptation.Traditional approaches,which rely on mathematical formulations or dedicated models,often fall short in addressing the complexity of emerging scenarios.As a core foundation model,large language models(LLMs)offer promising capabilities for physical-layer intelligence,leveraging their strong generalization ability and multimodal fusion potential.This paper provides a systematic survey of recent advances in applying LLMs to physical-layer tasks,including channel prediction,beam management,and resource allocation.It also reviews key enabling techniques such as architectural innovations,parameter-efficient fine-tuning,and multimodal information integration.By analyzing current model capabilities and limitations,the paper identifies future research directions such as constructing dynamic LLM-based channel knowledge bases and enhancing semantic communication through knowledge reinforcement.Finally,the integration of trustworthy AI,model-data fusion,and edge intelligence is discussed to support the evolution of intelligent physical-layer processing in 6G.

关键词

大语言模型/物理层智能化/6G通信/信道建模/多模态学习/参数高效微调/基于LLM的信道知识库

Key words

large language models(LLMs)/intelligent physical layer/6G communication/channel modeling/multimodal learning/parameter-efficient fine-tuning/LLM-based channel knowledge base

分类

信息技术与安全科学

引用本文复制引用

王文,孙亚萍,许晓东,何业军,陈昊,马楠,崔曙光..大语言模型驱动的无线通信物理层任务智能处理技术综述[J].移动通信,2025,49(7):21-30,10.

基金项目

国家自然科学基金"语义知识库驱动的零样本多层级语义编码与特征传输研究"(62301471) (62301471)

国家自然科学基金"语义知识库构建方法与智能演进机理"(62293482) (62293482)

移动信息网络国家科技重大专项(2024ZD1300700) (2024ZD1300700)

移动通信

1006-1010

访问量0
|
下载量0
段落导航相关论文