| 注册
首页|期刊导航|应用数学和力学|两类集优化问题的Hadamard适定性研究

两类集优化问题的Hadamard适定性研究

程翔 彭再云 杨鑫 文铭

应用数学和力学2025,Vol.46Issue(7):926-938,13.
应用数学和力学2025,Vol.46Issue(7):926-938,13.DOI:10.21656/1000-0887.450273

两类集优化问题的Hadamard适定性研究

Hadamard Well-Posedness in 2 Types of Set Optimization Problems

程翔 1彭再云 1杨鑫 1文铭1

作者信息

  • 1. 重庆交通大学数学与统计学院,重庆 400074
  • 折叠

摘要

Abstract

The Hadamard well-posedness of a set optimization problem(P)and an infinite set optimization problem(ISOP)under upper set order relation was studied.Firstly,in the case of the gamma convergence of the set-valued mapping sequence,the definitions of the generalized Hadamard well-posedness and the ε-gener-alized Hadamard well-posedness for(P)were given,the relationship between these 2 types of well-posedness-es were established,and the sufficient conditions for the Hadamard well-posedness of(P)were obtained.Then the sufficient conditions for the Hadamard well-posedness of(ISOP)were studied with the concept of Hausdor-ff cone-continuity under functional perturbations of both constraint sets and objective maps.The results im-prove those in the relevant previous references,enriching the study of set optimization problems.

关键词

集优化问题/Hadamard适定性/Gamma-收敛/Hausdorff-锥连续

Key words

set optimization problem/Hadamard well-posedness/Gamma-convergence/Hausdorff cone-conti-nuity

分类

数理科学

引用本文复制引用

程翔,彭再云,杨鑫,文铭..两类集优化问题的Hadamard适定性研究[J].应用数学和力学,2025,46(7):926-938,13.

基金项目

国家自然科学基金(面上项目)(12271067) (面上项目)

重庆市自然科学基金面上项目(CSTB2024NSCQ-MSX0973) (CSTB2024NSCQ-MSX0973)

重庆市教委科技研究项目重点项目(KJZD-202200704) (KJZD-202200704)

重庆市高等教育教学改革研究项目重点项目(232072) (232072)

重庆市研究生教育教学改革项目(yjg223094) (yjg223094)

教育部协同育人项目(220503414180513) 本文作者衷心感谢重庆交通大学研究生科研创新项目(2024S0139)对本文的资助. (220503414180513)

应用数学和力学

OA北大核心

1000-0887

访问量0
|
下载量0
段落导航相关论文