| 注册
首页|期刊导航|液压与气动|基于多源异构传感信息与有效通道注意力—卷积神经网络的液压起重机迁移故障诊断

基于多源异构传感信息与有效通道注意力—卷积神经网络的液压起重机迁移故障诊断

郭媛 王成龙 湛从昌 夏欢

液压与气动2025,Vol.49Issue(7):43-52,10.
液压与气动2025,Vol.49Issue(7):43-52,10.DOI:10.11832/j.issn.1000-4858.2025.07.005

基于多源异构传感信息与有效通道注意力—卷积神经网络的液压起重机迁移故障诊断

Fault Diagnosis of Hydraulic Cranes via Transfer Learning Based on Multi-source Heterogeneous Sensor Information and Effective Channel Attention-convolutional Neural Network

郭媛 1王成龙 2湛从昌 3夏欢4

作者信息

  • 1. 冶金装备及其控制教育部重点实验室,湖北 武汉 430081||武汉科技大学 精密制造研究院,湖北 武汉 430081
  • 2. 冶金装备及其控制教育部重点实验室,湖北 武汉 430081||机械传动与制造工程湖北省重点实验室,湖北 武汉 430081
  • 3. 冶金装备及其控制教育部重点实验室,湖北 武汉 430081
  • 4. 武汉钢铁有限公司硅钢部,湖北 武汉 430080
  • 折叠

摘要

Abstract

The dynamic pressure signals of hydraulic systems have the characteristics of nonlinearity,multi-source coupling,and sensitivity to operating conditions.This results in high signal complexity and low feature discernibility,rendering traditional diagnostic methods ineffective.A deep learning diagnostic framework based on multi-sensor collaborative perception is proposed to address these issues.Multiple heterogeneous sensor signals are mapped into a multi-channel input tensor through spatial topology mapping,which preserves independent sensor features while achieving joint representation of multimodal information.A parallel convolutional architecture extracts spatiotemporal features from each channel,and an effective channel attention mechanism enhances fault-sensitive information,optimizing cross-modal features for precise classification.Experimental results show that the proposed method achieves over 95%accuracy in diagnosis of hydraulic pump leakage fault on the UCI standard hydraulic dataset.By introducing transfer learning theory,the pre trained model trained on the UCI standard hydraulic dataset is transferred to the forklift lifting hydraulic system,and the model still maintains an accuracy of 97.65%.These results confirm the model's strong generalization ability across different scenarios and provide an effective solution for fault diagnosis in complex hydraulic systems.

关键词

液压系统/多传感器信息融合/故障诊断/深度学习/有效通道注意力

Key words

hydraulic system/multi-sensor information fusion/fault diagnosis/deep learning/effective channel attention

分类

机械制造

引用本文复制引用

郭媛,王成龙,湛从昌,夏欢..基于多源异构传感信息与有效通道注意力—卷积神经网络的液压起重机迁移故障诊断[J].液压与气动,2025,49(7):43-52,10.

基金项目

国家重点研发计划(2021YFB2011200) (2021YFB2011200)

国家自然科学基金(52475210) (52475210)

液压与气动

OA北大核心

1000-4858

访问量0
|
下载量0
段落导航相关论文