| 注册
首页|期刊导航|重庆工商大学学报(自然科学版)|基于操纵痕迹融合的人脸伪造检测方法

基于操纵痕迹融合的人脸伪造检测方法

黄继胜 杨高明

重庆工商大学学报(自然科学版)2025,Vol.42Issue(4):80-87,8.
重庆工商大学学报(自然科学版)2025,Vol.42Issue(4):80-87,8.DOI:10.16055/j.issn.1672-058X.2025.0004.010

基于操纵痕迹融合的人脸伪造检测方法

Face Forgery Detection Method Based on Manipulation Trace Fusion

黄继胜 1杨高明1

作者信息

  • 1. 安徽理工大学计算机科学与工程学院,安徽淮南 232001
  • 折叠

摘要

Abstract

Objective In view of the current lack of a powerful fake face detection model that can expose fake face images in complex scenes,a new network called two-stream manipulation trace network(TSMTN)is proposed for learning subtle manipulation traces on facial regions in fake images.Methods This method is different from the previous methods of directly learning features from images.Instead,it first extracts manipulation traces from the image and then uses the manipulation traces to detect whether the face has been manipulated.The network consists of three key modules:spatial domain manipulation trace extraction(SDMTE),frequency domain manipulation trace extraction(FDMTE)and feature fusion module(FFM)based on self-attention mechanism.SDMTE uses convolutional neural networks(CNNs)to learn subtle manipulation traces in the image spatial domain.FDMTE learns the manipulation traces of high-frequency information in the frequency domain of images.FFM fuses manipulation traces in the spatial and frequency domains to generate final features for classification.Results The experimental results show that the model has good performance and has reached an advanced level on commonly used detection datasets.Conclusion This method shows good robustness and generalization ability and has made some progress,which is of great significance.

关键词

人脸检测/操纵痕迹/空间域/频域/自注意力机制

Key words

face detection/manipulation traces/spatial domain/frequency domain/self-attention mechanism

分类

信息技术与安全科学

引用本文复制引用

黄继胜,杨高明..基于操纵痕迹融合的人脸伪造检测方法[J].重庆工商大学学报(自然科学版),2025,42(4):80-87,8.

基金项目

安徽省自然科学基金(2008085MF220). (2008085MF220)

重庆工商大学学报(自然科学版)

1672-058X

访问量1
|
下载量0
段落导航相关论文