| 注册
首页|期刊导航|中国中西医结合影像学杂志|术前MRI影像组学预测模型在非增强成人弥漫性胶质瘤分级诊断中的应用

术前MRI影像组学预测模型在非增强成人弥漫性胶质瘤分级诊断中的应用

刘彦宏 梁瑜晗 陈泽龙 王明霄 孙嘉翊 张雪梦 刘嘉霖 王玉林

中国中西医结合影像学杂志2025,Vol.23Issue(4):420-424,5.
中国中西医结合影像学杂志2025,Vol.23Issue(4):420-424,5.DOI:10.3969/j.issn.1672-0512.2025.04.004

术前MRI影像组学预测模型在非增强成人弥漫性胶质瘤分级诊断中的应用

Application of MRI radiomics predictive model in grading non-enhancing adult diffuse gliomas

刘彦宏 1梁瑜晗 1陈泽龙 1王明霄 1孙嘉翊 2张雪梦 3刘嘉霖 4王玉林3

作者信息

  • 1. 中国人民解放军医学院,北京 100853||中国人民解放军总医院第一医学中心放射诊断科,北京 100853
  • 2. 中国人民解放军总医院第四医学中心放射诊断科,北京 100048
  • 3. 中国人民解放军总医院第一医学中心放射诊断科,北京 100853
  • 4. 中国人民解放军总医院第一医学中心神经外科,北京 100853
  • 折叠

摘要

Abstract

Objective:To evaluate the value of preoperative MRI radiomics models in grading non-enhancing adult diffuse gliomas.Methods:A retrospective analysis of 153 patients(160 lesions)with adult diffuse gliomas was constructed.All lesions had no enhancement on T1WI contrast-enhancement(T1WI-CE)image.Among the 160 lesions,103 lesions were classified into the low-grade glioma group and 57 lesions in the high-grade glioma group,then randomly divided into the training set(128 lesions)and the validation set(32 lesions)at a ratio of 8∶2.T2WI and ADC images were co-registered with T1WI-CE images,and ROIs were delineated on T2WI iamges.A total of 1 132 features were extracted form T2WI,T1WI-CE and ADC images,comprising shape,first-order histogram,second-order texture and wavelet features.The features with stability(ICC≥0.85)were retained,and the optimal feature subset was selected via elastic network regression(ENR)combined with recursive feature elimination(RFE).Six machine learning classifiers were adopted to construct the model,including logistic regression,support vector machine(radial basis function kernel,linear kernel),K-nearest neighbor(KNN),decision tree,Naive Bayes.The predictive performance of the models was evaluated using the AUC,accuracy,sensitivity,specificity and F1-score.Results:Radiomics models effectively predicted high-grade glioma.The multiparametric model(T2WI+T1WI-CE+ADC)with KNN classifier achieved AUCs of 0.892 and 0.805,accuracies of 0.805 and 0.719,sensitivities of 0.915 and 0.800,specificities of 0.753 and 0.727,F1-scores of 0.782 and 0.506 in the training set and the validation set.Conclusion:Preoperative MRI radiomics models enable accurate grading of non-enhancing adult diffuse gliomas,offering critical support for clinical decision-making and patient management.

关键词

弥漫性胶质瘤/高级别胶质瘤/磁共振成像/影像组学/机器学习

Key words

Diffuse glioma/High-grade glioma/Magnetic resonance imaging/Radiomics/Machine learning

引用本文复制引用

刘彦宏,梁瑜晗,陈泽龙,王明霄,孙嘉翊,张雪梦,刘嘉霖,王玉林..术前MRI影像组学预测模型在非增强成人弥漫性胶质瘤分级诊断中的应用[J].中国中西医结合影像学杂志,2025,23(4):420-424,5.

基金项目

国家自然科学基金项目(62136004). (62136004)

中国中西医结合影像学杂志

1672-0512

访问量0
|
下载量0
段落导航相关论文