| 注册
首页|期刊导航|智慧农业(中英文)|基于改进HRNet的高精度鱼类姿态估计方法

基于改进HRNet的高精度鱼类姿态估计方法

彭秋珺 李蔚然 刘业强 李振波

智慧农业(中英文)2025,Vol.7Issue(3):160-172,13.
智慧农业(中英文)2025,Vol.7Issue(3):160-172,13.DOI:10.12133/j.smartag.SA202502001

基于改进HRNet的高精度鱼类姿态估计方法

High-Precision Fish Pose Estimation Method Based on Improved HRNet

彭秋珺 1李蔚然 1刘业强 1李振波1

作者信息

  • 1. 中国农业大学国家数字渔业创新中心,北京 100083,中国||中国农业大学 信息与电气工程学院,北京 100083,中国||农业农村部智慧养殖技术重点实验室,北京 100083,中国||农业农村部信息化标准化重点实验室,北京 100083,中国||北京市农业物联网工程技术研究中心,北京 100083,中国
  • 折叠

摘要

Abstract

[Objective]Fish pose estimation(FPE)provides fish physiological information,facilitating health monitoring in aquaculture.It aids decision-making in areas such as fish behavior recognition.When fish are injured or deficient,they of-ten display abnormal behaviors and noticeable changes in the positioning of their body parts.Moreover,the unpredictable posture and orientation of fish during swimming,combined with the rapid swimming speed of fish,restrict the current scope of research in FPE.In this research,a FPE model named HPFPE is presented to capture the swimming posture of fish and accurately detect their key points.[Methods]On the one hand,this model incorporated the CBAM module into the HRNet framework.The attention module enhanced accuracy without adding computational complexity,while effec-tively capturing a broader range of contextual information.On the other hand,the model incorporated dilated convolution to increase the receptive field,allowing it to capture more spatial context.[Results and Discussions]Experiments showed that compared with the baseline method,the average precision(AP)of HPFPE based on different backbones and input siz-es on the oplegnathus punctatus datasets had increased by 0.62,1.35,1.76,and 1.28 percent point,respectively,while the average recall(AR)had also increased by 0.85,1.50,1.40,and 1.00,respectively.Additionally,HPFPE outperformed oth-er mainstream methods,including DeepPose,CPM,SCNet,and Lite-HRNet.Furthermore,when compared to other meth-ods using the ornamental fish data,HPFPE achieved the highest AP and AR values of 52.96%,and 59.50%,respectively.[Conclusions]The proposed HPFPE can accurately estimate fish posture and assess their swimming patterns,serving as a valuable reference for applications such as fish behavior recognition.

关键词

水产养殖/计算机视觉/鱼类姿态估计/关键点/注意力机制

Key words

aquaculture/computer vision/fish pose estimation/key point/attention mechanism

分类

农业科技

引用本文复制引用

彭秋珺,李蔚然,刘业强,李振波..基于改进HRNet的高精度鱼类姿态估计方法[J].智慧农业(中英文),2025,7(3):160-172,13.

基金项目

National Key Research and Development Program of China(2020YFD0900204) (2020YFD0900204)

National Science and Technology Major Project(2021ZD0113805) (2021ZD0113805)

Beijing Smart Agriculture Innovation Consortium Project(BAIC10-2024) 国家重点研发计划项目(2020YFD0900204) (BAIC10-2024)

新一代人工智能国家科技重大专项(2021ZD0113805) (2021ZD0113805)

北京市智慧农业创新团队项目(BAIC10-2024) (BAIC10-2024)

智慧农业(中英文)

2096-8094

访问量0
|
下载量0
段落导航相关论文