| 注册
首页|期刊导航|兵工自动化|基于多策略融合的改进灰狼算法

基于多策略融合的改进灰狼算法

文竹 韦杏琼 刘静怡

兵工自动化2025,Vol.44Issue(7):31-36,6.
兵工自动化2025,Vol.44Issue(7):31-36,6.DOI:10.7690/bgzdh.2025.07.007

基于多策略融合的改进灰狼算法

Improved Grey Wolf Algorithm Based on Multi-strategy Fusion

文竹 1韦杏琼 2刘静怡2

作者信息

  • 1. 广西警察学院信息技术学院,南宁 530028
  • 2. 广西民族大学人工智能学院,南宁 530006
  • 折叠

摘要

Abstract

In order to solve the problems of small search scale,slow convergence speed and imbalance between global search and local search in current path optimization algorithms,a multi-strategy fusion of grey wolf optimization algorithm(MGWO)is proposed.The quality of the initial solution is improved by introducing the elite reverse optimization strategy to initialize the population.An adaptive weight mechanism is used to dynamically adjust the leadership of the optimal wolf.The ability of balancing local search and global exploration is improved through the piecewise search method.The simulation results show that the algorithm performs well,can quickly find the optimal path,and improve the overall performance of the algorithm,which has a certain reference.

关键词

改进灰狼算法/精英反向策略/自适应权重/分段策略/路径优化

Key words

improved grey wolf algorithm/elite reverse strategy/adaptive weight/segmentation strategy/path optimization

分类

数理科学

引用本文复制引用

文竹,韦杏琼,刘静怡..基于多策略融合的改进灰狼算法[J].兵工自动化,2025,44(7):31-36,6.

基金项目

广西哲学社会科学研究课题(24KSB008) (24KSB008)

广西高等教育本科教学改革工程A类项目(2024JGA395) (2024JGA395)

兵工自动化

OA北大核心

1006-1576

访问量0
|
下载量0
段落导航相关论文