| 注册
首页|期刊导航|巢湖学院学报|ζ(2n+1)的积分表示及广义伯努利数

ζ(2n+1)的积分表示及广义伯努利数

吴亚运

巢湖学院学报2025,Vol.27Issue(3):61-65,5.
巢湖学院学报2025,Vol.27Issue(3):61-65,5.DOI:10.12152/j.issn.1672-2868.2025.03.007

ζ(2n+1)的积分表示及广义伯努利数

The Integral Representation of ζ(2n+1)and Generalized Bernoulli Numbers

吴亚运1

作者信息

  • 1. 合肥师范学院 数学与统计学院,安徽 合肥 230601
  • 折叠

摘要

Abstract

The research objective of this article is to generalize Euler's result,which represents the values of the zeta function at positive even points in closed form using Bernoulli numbers,to the positive odd points of the zeta function.The article establishes an integral relationship between the values of the zeta function at positive odd points and generalized Bernoulli numbers.Moreover,the integral representation of rational linear combinations of ζ(2n+1)/π2n,n≥1 is obtained by using hyperbolic functions.The conclusion of the article extends the connection between the values of the zeta function at positive integer points and(generalized)Bernoulli numbers.At the same time,it establishes a method to represent the values of the zeta function at positive integer points in the form of in-tegrals.

关键词

黎曼泽塔函数/积分表示/广义伯努利数/双曲函数

Key words

Riemann zeta function/integral representation/generalized Bernoulli numbers/hyperbolic functions

分类

数理科学

引用本文复制引用

吴亚运..ζ(2n+1)的积分表示及广义伯努利数[J].巢湖学院学报,2025,27(3):61-65,5.

基金项目

合肥师范学院高层次人才项目(项目编号:2022rcjj24) (项目编号:2022rcjj24)

巢湖学院学报

1672-2868

访问量0
|
下载量0
段落导航相关论文