| 注册
首页|期刊导航|重庆理工大学学报|改进YOLOv8的轻量化车辆目标检测算法研究

改进YOLOv8的轻量化车辆目标检测算法研究

蒋康 孙仁云 李卓霖 张国灏 刘金庆

重庆理工大学学报2025,Vol.39Issue(13):35-42,8.
重庆理工大学学报2025,Vol.39Issue(13):35-42,8.DOI:10.3969/j.issn.1674-8425(z).2025.07.005

改进YOLOv8的轻量化车辆目标检测算法研究

Research on lightweight vehicle object detection algorithm by improved YOLOv8

蒋康 1孙仁云 1李卓霖 1张国灏 1刘金庆1

作者信息

  • 1. 西华大学汽车与交通学院,成都 610039||汽车测控与安全四川省重点实验室,成都 610039
  • 折叠

摘要

Abstract

To address the issue of complex and dynamic road vehicle conditions and limited detection platform resources,this paper proposes an enhanced vehicle object detection algorithm based on improved YOLOv8.It utilizes an enhanced REPELAN module to replace the C2F module,reducing parameter count and model weight.The original detection head is replaced with a lightweight shared convolutional head(LSCD head),enhancing accuracy while reducing model size.By incorporating a coordinate attention mechanism in the backbone network,the vehicle target detection performance is improved.The WISE-IoU loss function replaces the original CIOU loss function in the YOLOv8 network,accelerating convergence.Experiments employing the processed KITTI and SODA10M datasets demonstrate the improved algorithm increases mAP0.5,mAP0.5~95,recall,and precision by 1.4%,1%,1.8%,and 1.2%compared to YOLOv8n.GFLOP,parameter count,and model volume decrease by 37%,46.7%and 46.8%respectively.It effectively balances model weight reduction and performance,showing excellent generalization capabilities and meeting deployment requirements in resource-constrained environments.

关键词

车辆检测/轻量化/YOLOv8/REPVGG/坐标注意力机制/Wise-IoU

Key words

vehicle detection/lightweight/YOLOv8/REPVGG/coordinate attention mechanism/wise-IoU

分类

信息技术与安全科学

引用本文复制引用

蒋康,孙仁云,李卓霖,张国灏,刘金庆..改进YOLOv8的轻量化车辆目标检测算法研究[J].重庆理工大学学报,2025,39(13):35-42,8.

基金项目

四川省科技厅重点研发项目(23ZDYF0506) (23ZDYF0506)

成都市科技局重点研发项目(2022-YF05-01047-SN) (2022-YF05-01047-SN)

重庆理工大学学报

OA北大核心

1674-8425

访问量0
|
下载量0
段落导航相关论文