| 注册
首页|期刊导航|铁道科学与工程学报|基于内外双视角的高速铁路风险预测

基于内外双视角的高速铁路风险预测

夏溪蔓 孟学雷 程晓卿 林立 韩正

铁道科学与工程学报2025,Vol.22Issue(7):2921-2931,11.
铁道科学与工程学报2025,Vol.22Issue(7):2921-2931,11.DOI:10.19713/j.cnki.43-1423/u.T20241549

基于内外双视角的高速铁路风险预测

High-speed railway risk prediction based on internal and external perspectives

夏溪蔓 1孟学雷 2程晓卿 3林立 4韩正5

作者信息

  • 1. 兰州交通大学 交通运输学院,甘肃 兰州 730070
  • 2. 兰州交通大学 交通运输学院,甘肃 兰州 730070||北京交通大学 先进轨道交通自主运行全国重点实验室,北京 100044
  • 3. 北京交通大学 先进轨道交通自主运行全国重点实验室,北京 100044
  • 4. 山东交通学院 轨道交通学院,山东 济南 250300
  • 5. 中国铁路设计集团有限公司,天津 300308
  • 折叠

摘要

Abstract

Accurate prediction of high-speed railway risks is crucial for the safety management of such systems.To effectively forecast the probability of risks during high-speed railway operations and address the challenge of simultaneously capturing both internal and external characteristics of accident causes,an Internal and External Perspectives on the Topological Dendrogram of Accident Causes(IEPTDAC)was proposed for high-speed railways.Firstly,the topological relationships of internal accident causes were characterized based on a tree-like structure,and the external characteristics of accident causes were extracted from the aspects of human,machine,environment,and management.Then,a multi-layer convolution operation of Convolutional Neural Network(CNN)was employed to extract both internal and external features of accident causes.Additionally,the Particle Swarm Optimization(PSO)algorithm was introduced to optimize the key hyperparameters of the CNN,further enhancing the model's predictive performance.Finally,five sections were selected from a railway administration group company,taking data on 19 accident causes and risk accidents as the research objects.Under the time granularities of 1 hour,3 hours,and 5 hours,a comparative analysis was conducted on the IEPTDAC model and the 9 existing prediction models respectively.The experimental results demonstrated that the IEPTDAC model exhibited superior prediction accuracy and fitting performance compared with both existing combination prediction models and traditional single prediction models.For instance,at a 1-hour time granularity,when compared to the prediction model based on Transient Extraction Transform and DSRNet-AttBiLSTM in the control experiment,the IEPTDAC model achieves a reduction in Mean Absolute Error(fmae)by 32.04%,a decrease in Root Mean Square Error(frmse)by 36.35%,and an increase in the Coefficient of Determination(fr2)by 0.46%.Across the 1-hour,3-hour,and 5-hour time granularities,the IEPTDAC model improves the fr2 by 1.71%,3.00%,and 1.27%,respectively,compared to the traditional Convolutional Long Short-Term Memory(ConvLSTM)model.Furthermore,ablation experiments designed in this paper validate the rationality and effectiveness of each branch of the IEPTDAC model.This method can provide an effective technical means for high-speed railway risk prediction.

关键词

高速铁路/卷积神经网络/深度学习/多尺度风险预测/粒子群优化算法

Key words

speed railway/convolutional neural networks/deep learning/multi-scale risk prediction/particle swarm optimization algorithm

分类

交通工程

引用本文复制引用

夏溪蔓,孟学雷,程晓卿,林立,韩正..基于内外双视角的高速铁路风险预测[J].铁道科学与工程学报,2025,22(7):2921-2931,11.

基金项目

甘肃省科技计划资助项目(24JRRA865) (24JRRA865)

国家自然科学基金资助项目(72361020) (72361020)

铁道科学与工程学报

OA北大核心

1672-7029

访问量0
|
下载量0
段落导航相关论文