| 注册
首页|期刊导航|地质科技通报|基于历史样本增强的滑坡智能识别改进算法

基于历史样本增强的滑坡智能识别改进算法

饶炜博 陈刚 邹崇尧 范小洁 常富强 何建权 林晓静 李显巨 唐骞

地质科技通报2025,Vol.44Issue(4):48-61,14.
地质科技通报2025,Vol.44Issue(4):48-61,14.DOI:10.19509/j.cnki.dzkq.tb20240572

基于历史样本增强的滑坡智能识别改进算法

An improved algorithm for intelligent landslide identification based on historical sample enhancement

饶炜博 1陈刚 2邹崇尧 3范小洁 3常富强 3何建权 3林晓静 3李显巨 4唐骞5

作者信息

  • 1. 中国地质大学(武汉)海洋学院,武汉 430074||中国地质大学(武汉)湖北巴东地质灾害国家野外科学观测研究站,武汉 430074
  • 2. 中国地质大学(武汉)海洋学院,武汉 430074
  • 3. 湖北省测绘工程院,武汉 430074
  • 4. 中国地质大学(武汉)计算机学院,武汉 430074
  • 5. 中国地质大学(武汉)地质探测与评估教育部重点实验室,武汉 430074
  • 折叠

摘要

Abstract

[Objective]The complex topography of Sichuan Province,characterized by intersecting mountainous terrain,leads to frequent,sudden,and highly susceptible landslides.These events pose significant threats to both people's property and environmental resources.Therefore,conducting landslide identification and charaterization are crucial for effective hazard prevention,monitoring,and post-disaster preparedness.[Methods]To overcome the limitations of conventional visual interpretation methods-including high economic costs,time-intensive procedures,labor demands,and challenges in acquiring historical samples,this study incorporates multiple landslide-influencing factors such as elevation,slope gradient,and aspect into the analysis framework.A quantitative information value analysis was conducted to evaluate the predictive capacity of these influencing factors for historical landslide identification,thereby improving the reliability of historical landslide inventories.To solve issues such as inaccurate localization and ambiguous segmentation boundaries in automatic landslide identification results,this paper improves the Mask R-CNN model using a recursive pyramid network and DIoU loss,proposing an improved algorithm for intelligent landslide identification.[Results]Evaluation results demonstrate that the enhanced algorithm significant improvements over the baseline Mask R-CNN,with 3.6%increase in precision and 5.2%increase in recall.The model attains 74.4%identification accuracy in Qingchuan County,Sichuan,showing particular effectiveness in delineating historical landslide boundaries with clear geomorphological fidelity.[Conclusion]Combining satellite remote sensing with deep learning advancements,this improved algorithm enables intelligent landslide identification and supports data-driven risk assessment,offering critical insights for geohazard mitigation.

关键词

滑坡识别/数据增强/深度学习/信息量值/滑坡影响因子/改进算法

Key words

landslide identification/data enhancement/deep learning/information quantity value/landslide-influencing factor/improved algorithm

分类

天文与地球科学

引用本文复制引用

饶炜博,陈刚,邹崇尧,范小洁,常富强,何建权,林晓静,李显巨,唐骞..基于历史样本增强的滑坡智能识别改进算法[J].地质科技通报,2025,44(4):48-61,14.

基金项目

湖北省自然资源厅科学研究项目(ZRZY2024KJ03) (ZRZY2024KJ03)

湖北巴东地质灾害国家野外科学观测研究站开放基金项目(BNORSG-202415) (BNORSG-202415)

地质科技通报

OA北大核心

2096-8523

访问量0
|
下载量0
段落导航相关论文