| 注册
首页|期刊导航|分析测试学报|表面增强拉曼光谱技术在新污染物快速检测领域的最新应用进展

表面增强拉曼光谱技术在新污染物快速检测领域的最新应用进展

马静 张艺严 张文韬 李鱼 杜晶晶 孙振丽

分析测试学报2025,Vol.44Issue(8):1526-1538,13.
分析测试学报2025,Vol.44Issue(8):1526-1538,13.DOI:10.12452/j.fxcsxb.250331251

表面增强拉曼光谱技术在新污染物快速检测领域的最新应用进展

Recent Advances in Surface-enhanced Raman Scattering Technology for Rapid Detection of Emerging Contaminants

马静 1张艺严 1张文韬 1李鱼 1杜晶晶 2孙振丽1

作者信息

  • 1. 华北电力大学 环境科学与工程学院,北京 102206
  • 2. 中国科学院生态环境研究中心,北京 100085
  • 折叠

摘要

Abstract

Emerging contaminants(ECs)refer to a class of chemical substances that are detectable in the environment and natural ecosystems and may pose potential risks to human health and environ-mental safety,even at low concentrations.ECs of global concern include persistent organic pollut-ants regulated by international conventions,endocrine-disrupting chemicals,antibiotics,and mi-croplastics.Surface-enhanced Raman scattering(SERS)has demonstrated significant potential for ef-ficient identification and quantitative analysis of ECs due to its advantages of high sensitivity,rapid response,and non-destructive detection.This paper systematically reviews the basic principles and enhancement mechanisms of SERS technology,with a focus on key strategies and recent advance-ments in improving the sensitivity,selectivity,and practicality of the substrates.Furthermore,the paper outlines the latest research trends in ultra-sensitive detection of various ECs using SERS,with particular emphasis on the application of artificial intelligence algorithms in SERS spectral data pro-cessing and ECs identification.Finally,the paper discusses the challenges of detecting ECs in com-plex environmental samples using current technologies and provides an outlook on future research di-rections and application prospects.

关键词

新污染物(ECs)/表面增强拉曼光谱(SERS)/增强策略/基底实用性/人工智能(AI)

Key words

emerging contaminants(ECs)/surface-enhanced Raman scattering(SERS)/enhanc-ing strategies/substrate practicality/AI

分类

化学化工

引用本文复制引用

马静,张艺严,张文韬,李鱼,杜晶晶,孙振丽..表面增强拉曼光谱技术在新污染物快速检测领域的最新应用进展[J].分析测试学报,2025,44(8):1526-1538,13.

基金项目

国家自然科学基金资助项目(U21A20290) (U21A20290)

分析测试学报

OA北大核心

1004-4957

访问量0
|
下载量0
段落导航相关论文