| 注册
首页|期刊导航|广东工业大学学报|面向标签可变性的可拓分类方法

面向标签可变性的可拓分类方法

田英杰 刘大莲 李兴森

广东工业大学学报2025,Vol.42Issue(4):1-7,7.
广东工业大学学报2025,Vol.42Issue(4):1-7,7.DOI:10.12052/gdutxb.250108

面向标签可变性的可拓分类方法

Extension Classification Method for Label Variability

田英杰 1刘大莲 2李兴森3

作者信息

  • 1. 中国科学院 虚拟经济与数据科学研究中心,北京 100190
  • 2. 北京联合大学 数理部,北京 100101||北京联合大学 数理与交叉科学研究院,北京 100101
  • 3. 广东工业大学 可拓学与创新方法研究所,广东 广州 510006
  • 折叠

摘要

Abstract

Traditional classification algorithms typically assume that the labels of training samples are static and deterministic,ignoring the dynamic characteristics of sample labels that may change with conditions in real-world scenarios.In response to this issue,this paper proposes a new learning problem setting—the Extended Classification Problem,which simultaneously gives the class labels and label variability states of samples in the training data,which to characterize the class transition potential of samples under the influence of change mechanisms.Based on this setting,a multi-label learning framework was designed,an extension classification algorithm for label variability using support vector machine was constructed,to achieve collaborative optimization of category discrimination and label variability prediction.The experimental section validated the effectiveness of the proposed algorithm on both synthetic and real datasets.This paper provides a new modeling approach for label dynamic learning problems,which has good application prospects.

关键词

可拓分类/可拓学/标签可变性/多标签学习/支持向量机

Key words

extensible classification/Extenics/label variability/multi-label learning/support vector machine

分类

信息技术与安全科学

引用本文复制引用

田英杰,刘大莲,李兴森..面向标签可变性的可拓分类方法[J].广东工业大学学报,2025,42(4):1-7,7.

基金项目

国家自然科学基金资助项目(71731009,72071049) (71731009,72071049)

广东省自然科学基金资助项目(2024A1515011324) (2024A1515011324)

北京联合大学校级科研项目(ZK20202507) (ZK20202507)

广东工业大学学报

1007-7162

访问量0
|
下载量0
段落导航相关论文