| 注册
首页|期刊导航|高压电器|基于振动信号格拉姆角场增强的GIS设备运行状态辨识方法

基于振动信号格拉姆角场增强的GIS设备运行状态辨识方法

王劭鹤 赵琳 杨勇 金涌涛 王枭 陈孝信 张阳

高压电器2025,Vol.61Issue(8):39-46,8.
高压电器2025,Vol.61Issue(8):39-46,8.DOI:10.13296/j.1001-1609.hva.2025.08.005

基于振动信号格拉姆角场增强的GIS设备运行状态辨识方法

Operation Status Identification Method of GIS Based on Enhanced Gramian Angular Fields of Vibration Signals

王劭鹤 1赵琳 1杨勇 1金涌涛 1王枭 2陈孝信 1张阳2

作者信息

  • 1. 浙江省电力公司电力科学研究院,杭州 310014
  • 2. 上海睿深电子科技有限公司,上海 201108
  • 折叠

摘要

Abstract

In order to realize intelligent monitoring and effective identification of operation status of gas insulated switchgear(GIS),in this paper a kind of operation status identification method of GIS based on enhanced Gramian an-gular fields and residual neural network are proposed.The original vibration time-domain signals of GIS equipment are characterized by high-order through the Gramian angular fields,and it is projected into a two-dimensional pic-ture,and then the residual neural network is used to achieve the status identification of GIS.A test simulation testing system including three typical mechanical defects of GIS is set up.The test results show that the proposed method can not only effectively characterize the status characteristics of the original signal,but also the identification accuracy is significantly improved by approximately 5%compared with the conventional method,which proves the effectiveness of the proposed method.

关键词

振动信号/格拉姆角场/气体绝缘开关/残差神经网络/状态辨识

Key words

vibration signals/Gramian angular fields/gas insulated switchgear/residual neural network/status identification

引用本文复制引用

王劭鹤,赵琳,杨勇,金涌涛,王枭,陈孝信,张阳..基于振动信号格拉姆角场增强的GIS设备运行状态辨识方法[J].高压电器,2025,61(8):39-46,8.

基金项目

国网浙江省电力有限公司科技项目(5211DS20008K). Project Supported by Science and Technology Project of State Grid Zhejiang Electric Power Company(5211DS20008K). (5211DS20008K)

高压电器

OA北大核心

1001-1609

访问量0
|
下载量0
段落导航相关论文