| 注册
首页|期刊导航|海南大学学报(自然科学版)|聚合双流特征的高分遥感影像场景分类模型

聚合双流特征的高分遥感影像场景分类模型

潘凯祥 徐伟铭 何小英 李紫微 王娟

海南大学学报(自然科学版)2025,Vol.43Issue(3):305-317,13.
海南大学学报(自然科学版)2025,Vol.43Issue(3):305-317,13.DOI:10.15886/j.cnki.hdxbzkb.2023121401

聚合双流特征的高分遥感影像场景分类模型

A high-resolution remote sensing image scene classification model with aggregated dual-stream features

潘凯祥 1徐伟铭 1何小英 1李紫微 1王娟1

作者信息

  • 1. 福州大学数字中国研究院(福建),福建 福州 350108||空间数据挖掘与信息共享教育部重点实验室,福建 福州 350108||地理空间信息技术国家地方联合工程技术研究中心,福建 福州 350108
  • 折叠

摘要

Abstract

Aimed at the limitation of the discriminative capability of the extracted features and unsatisfactory classification performance of the scene classification methods based on the deep learning,in the report,in order to improve the effective learning of the scene-representative features,a dual-stream architecture named SC-ETNet,which include the convolution stream and the transformation stream,was proposed for the remote sensing image scene classification.The convolution stream employed the spatial and channel reconstruction convolutions to separate and reconstruct features extracted by convolutional layers.The transformation stream used LightViT for the interaction between global tokens and image tokens to achieve local-global attention computation.The mean classification accuracy of the evaluation on the UC-Merced,AID,and NWPU-RESISC45 datasets was 99.61%,97.81%,and 95.33%,respectively.These data suggested that compared with the existing advanced scene classification methods,SC-ETNet demonstrates superior classification performance.

关键词

高分辨率遥感影像/场景分类/卷积神经网络/视觉转换器

Key words

high-resolution remote sensing images/scene classification/convolutional neural network/visual transformation

分类

信息技术与安全科学

引用本文复制引用

潘凯祥,徐伟铭,何小英,李紫微,王娟..聚合双流特征的高分遥感影像场景分类模型[J].海南大学学报(自然科学版),2025,43(3):305-317,13.

基金项目

国家自然科学基金项目(41801324) (41801324)

国家重点研发计划项目(2017YFB0503505-6) (2017YFB0503505-6)

福建省科技厅引导性项目(2022H0009) (2022H0009)

海南大学学报(自然科学版)

1004-1729

访问量0
|
下载量0
段落导航相关论文