| 注册
首页|期刊导航|杭州师范大学学报(自然科学版)|基于多层注意力机制的多元空气污染物浓度预测方法研究

基于多层注意力机制的多元空气污染物浓度预测方法研究

王相朝 刘俊 蔡博涵

杭州师范大学学报(自然科学版)2025,Vol.24Issue(4):347-355,364,10.
杭州师范大学学报(自然科学版)2025,Vol.24Issue(4):347-355,364,10.DOI:10.19926/j.cnki.issn.1674-232X.2024.08.121

基于多层注意力机制的多元空气污染物浓度预测方法研究

Research on Multivariate Air Pollutant Concentration Prediction Based on Multi-layer Attention Mechanism

王相朝 1刘俊 1蔡博涵1

作者信息

  • 1. 杭州师范大学信息科学与技术学院,浙江 杭州 311121
  • 折叠

摘要

Abstract

To address the challenges in air pollutant concentration prediction,such as single variable types,difficulties in spatial-temporal feature extraction,and complex dependencies among dimensions(variables),this study proposed a multi-layer attention mechanism-based framework for multivariate air pollutant concentration prediction(spatial-temporal-dimensional Transformer,STD-Transformer).The model utilized a multi-modal segment embedding method,integrating spatial-temporal and dimensional feature embedding techniques for data preprocessing.By constructing a three-layer attention mechanism(temporal,spatial and dimensional),the model efficiently extracted multi-dimensional spatial-temporal features and focuses on critical information.The input included multi-site air quality data and geographical location information,enabling simultaneous predictions of PM2.5,PM10,NO2,SO2 and other pollutant concentrations.Experimental results demonstrated that the STD-Transformer reduced the mean absolute error(MAE)by 11.46%compared to existing advanced methods in multi-step predictions(1 to 12 hours)for multiple pollutants,highlighting its superior performance in handling complex environmental data.

关键词

多元空气污染物浓度预测/注意力机制/变量依赖性/时空特征

Key words

multivariate air pollutant concentration prediction/attention mechanism/variable interdependence/spatio temporal features

分类

资源环境

引用本文复制引用

王相朝,刘俊,蔡博涵..基于多层注意力机制的多元空气污染物浓度预测方法研究[J].杭州师范大学学报(自然科学版),2025,24(4):347-355,364,10.

基金项目

国家自然科学基金项目(62273126). (62273126)

杭州师范大学学报(自然科学版)

1674-232X

访问量0
|
下载量0
段落导航相关论文