| 注册
首页|期刊导航|井冈山大学学报(自然科学版)|基于VMD和融合通道注意力机制DenseNet的脑电情绪识别

基于VMD和融合通道注意力机制DenseNet的脑电情绪识别

苏靖然 李秋生

井冈山大学学报(自然科学版)2025,Vol.46Issue(4):81-87,7.
井冈山大学学报(自然科学版)2025,Vol.46Issue(4):81-87,7.DOI:10.3969/j.issn.1674-8085.2025.04.010

基于VMD和融合通道注意力机制DenseNet的脑电情绪识别

EEG EMOTION RECOGNITION BASED ON VMD AND DENSENET WITH FUSION CHANNEL ATTENTION MECHANISM

苏靖然 1李秋生2

作者信息

  • 1. 赣南师范大学智能控制工程技术研究中心,江西,赣州 341000||山东现代学院电子信息学院,山东,济南 250104
  • 2. 赣南师范大学智能控制工程技术研究中心,江西,赣州 341000
  • 折叠

摘要

Abstract

Given the current difficulties of EEG signals feature extraction and limited accuracy,a new EEG emotion recognition model based on VMD and DenseNet with fusion channel attention mechanism is proposed,mainly including two modules:feature extraction and classification.Firstly,the VMD algorithm was introduced.It could realize the denoising processing of EEG signals,and the differential entropy features were extracted from the effective IMF signals to improve the discriminability of features under different emotional states.Secondly,the multi-scale convolution kernel and channel attention mechanism were integrated into the DenseNet network,which could not only extract the features of different scales,but also given different weights to different EEG channels,so as to further improve the accuracy of emotion recognition.Finally,the effectiveness and robustness of the model were verified on the SEED data set,and the average classification accuracy of 15 subjects could reach 96.86%.The results show that the proposed model can effectively extract EEG features related to emotion and achieve better classification results.

关键词

EEG/VMD/特征重用/多尺度卷积核/通道注意力机制

Key words

EEG/VMD/feature reuse/multi-scale convolution kernel/channel attention

分类

信息技术与安全科学

引用本文复制引用

苏靖然,李秋生..基于VMD和融合通道注意力机制DenseNet的脑电情绪识别[J].井冈山大学学报(自然科学版),2025,46(4):81-87,7.

基金项目

国家自然科学基金项目(61561004) (61561004)

江西省自然科学基金项目(20242BAB25052) (20242BAB25052)

井冈山大学学报(自然科学版)

1674-8085

访问量3
|
下载量0
段落导航相关论文