吉首大学学报(自然科学版)2025,Vol.46Issue(4):19-27,9.DOI:10.13438/j.cnki.jdzk.2025.04.004
一类三阶常微分方程无穷边值问题解的存在性
Existence of Solutions for a Class of Third-Order Ordinary Differential Equations Boundary Value Problems on an Infinite Interval
摘要
Abstract
This paper investigates the existence of solutions for a class of third-order ordinary differential equation boundary value problems on an infinite interval.Firstly,the boundary value problems is equiva-lently transformed into the existence problems of fixed points for a class of integral operators in a suit-able Banach space.Then,the complete continuity of the integral operators is proved by using the general-ized Arzelá-Ascoli theorem.Finally,the Leray-Schauder principle are employed to establish an exist-ence theorem of the solutions for this kind of boundary value problems.关键词
三阶常微分方程/无穷边值问题/Leray-Schauder原理/存在性Key words
third-order ordinary differential equations/boundary value problem on infinite intervals/Ler-ay-Schauder principle/existence分类
数理科学引用本文复制引用
宋国鑫,苟海德,刘静芳..一类三阶常微分方程无穷边值问题解的存在性[J].吉首大学学报(自然科学版),2025,46(4):19-27,9.基金项目
甘肃省自然科学基金资助项目(245RRA131) (245RRA131)