| 注册
首页|期刊导航|计算机工程|多机理指导的深度学习工业时序预测框架

多机理指导的深度学习工业时序预测框架

李姜辛 王鹏 汪卫

计算机工程2025,Vol.51Issue(7):47-58,12.
计算机工程2025,Vol.51Issue(7):47-58,12.DOI:10.19678/j.issn.1000-3428.0069406

多机理指导的深度学习工业时序预测框架

Multi-mechanism-guided Deep Learning Framework for Industrial Time-series Forecasting

李姜辛 1王鹏 1汪卫1

作者信息

  • 1. 复旦大学计算机科学技术学院,上海 200433
  • 折叠

摘要

Abstract

Industrial time-series forecasting is critical for optimizing production processes and enhancing decision-making.Existing deep learning-based methods often underperform in this context due to a lack of domain knowledge.Prior studies have proposed using mechanistic models to guide deep learning;however,these approaches typically consider only a single mechanistic model,ignoring scenarios with multiple time-series prediction mechanisms in industrial processes and the inherent complexity of industrial time-series(e.g.,multiscale dynamics and nonlinearity).To address this issue,this study proposes a Multi-Mechanism-guided Deep Learning for Industrial Time-series Forecasting(M-MDLITF)framework based on attention mechanisms.This framework embeds multiple mechanistic models into a deep industrial time-series prediction network to guide training and integrate the strengths of different mechanisms by focusing on final predictions.As an instantiation of the M-MDLITF,the Multi-mechanism Deep Wiener(M-DeepWiener)method employs contextual sliding windows and a Transformer-encoder architecture to capture complex patterns in industrial time-series.Experimental results from a simulated dataset and two real-world datasets demonstrate that M-DeepWiener achieves high computational efficiency and robustness.It significantly outperforms the single-mechanism Deep Wiener(DeepWiener),classical Wiener mechanistic models,and purely data-driven methods,reducing the prediction error by 20%compared to DeepWiener-M1 on the simulated dataset.

关键词

工业时序预测/深度学习/机理模型/多机理集成/复杂模式挖掘

Key words

industrial time-series prediction/deep learning/mechanism model/multi-mechanism integration/complex pattern mining

分类

信息技术与安全科学

引用本文复制引用

李姜辛,王鹏,汪卫..多机理指导的深度学习工业时序预测框架[J].计算机工程,2025,51(7):47-58,12.

基金项目

国家重点研发计划(2020YFB1710001). (2020YFB1710001)

计算机工程

OA北大核心

1000-3428

访问量0
|
下载量0
段落导航相关论文