| 注册
首页|期刊导航|计算机工程与应用|改进YOLOv11的无人机小目标检测算法

改进YOLOv11的无人机小目标检测算法

刘玉萍 尚翠娟 李明明

计算机工程与应用2025,Vol.61Issue(15):124-131,8.
计算机工程与应用2025,Vol.61Issue(15):124-131,8.DOI:10.3778/j.issn.1002-8331.2503-0274

改进YOLOv11的无人机小目标检测算法

Improved YOLOv11 Algorithm for Small Target Detection in UAVs

刘玉萍 1尚翠娟 2李明明1

作者信息

  • 1. 安徽理工大学 计算机科学与工程学院,安徽 淮南 232001
  • 2. 滁州学院 人工智能学院,安徽 滁州 239000
  • 折叠

摘要

Abstract

To address the issues of small target detection tasks for unmanned aerial vehicles(UAVs),such as few pixels,large scale variations,and susceptibility to background interference,an improved algorithm based on YOLOv11 is pro-posed.Firstly,a new ELAN-DC module is designed to improve the backbone network,combining double convolution DC in the CBS module of the efficient layer aggregation network ELAN to enhance the feature extraction capability of back-bone part of the model.Secondly,a new global-to-local bidirectional feature fusion structure GLBiFPN is designed to improve the effect of multi-scale feature fusion.Finally,a dynamic detection head DyHead is introduced to further enhance the detection accuracy of the model.Experimental results show that on the VisDrone2019 dataset,the detection accuracy,mAP50 and mAP50-95,of the proposed algorithm has increased by 5.1 and 3.5 percentage points respectively,com-pared to YOLOv11n.

关键词

YOLOv11/小目标/多尺度特征融合/无人机

Key words

YOLOv11/small target/multi-scale feature fusion/unmanned aerial vehicles(UAVs)

分类

信息技术与安全科学

引用本文复制引用

刘玉萍,尚翠娟,李明明..改进YOLOv11的无人机小目标检测算法[J].计算机工程与应用,2025,61(15):124-131,8.

基金项目

安徽省高校优秀青年科研项目(2022AH030109). (2022AH030109)

计算机工程与应用

OA北大核心

1002-8331

访问量0
|
下载量0
段落导航相关论文