| 注册
首页|期刊导航|计算机科学与探索|融合局部和全局特征的深度多视图聚类网络

融合局部和全局特征的深度多视图聚类网络

李顺勇 李嘉茗 曹付元 郑孟蛟

计算机科学与探索2025,Vol.19Issue(8):2085-2098,14.
计算机科学与探索2025,Vol.19Issue(8):2085-2098,14.DOI:10.3778/j.issn.1673-9418.2410086

融合局部和全局特征的深度多视图聚类网络

Deep Multi-view Clustering Network Integrating Local and Global Features

李顺勇 1李嘉茗 2曹付元 3郑孟蛟2

作者信息

  • 1. 山西大学 数学与统计学院,太原 030006||复杂系统与数据科学教育部重点实验室(山西大学),太原 030006
  • 2. 山西大学 数学与统计学院,太原 030006
  • 3. 山西大学 计算机与信息技术学院,太原 030006||计算智能与中文信息处理教育部重点实验室(山西大学),太原 030006
  • 折叠

摘要

Abstract

Multiview clustering is an important research direction in data analysis,aiming to enhance clustering accuracy by integrating data from different perspectives.However,traditional multiview clustering methods improve clustering per-formance to some extent but often overlook the interaction and fusion of local and global features among views.More-over,recent multiview deep clustering methods,which enhance representation capabilities through deep neural networks or contrastive learning,focus on local or global features,failing to integrate these two types of features within the same framework.To address these shortcomings,this paper proposes a deep multiview clustering model that integrates convolu-tional neural networks and Transformers(deep multi-view clustering network integrating local and global features,DMVCN-ILGF).The model designs parallel convolutional and Transformer branches to extract local and global features,respectively.To achieve effective feature fusion,the model introduces a feature interaction mechanism(FIM)and a fea-ture fusion module(FFM),which fully integrates feature information from various views to enhance the interaction and fu-sion of different features,improving clustering performance.Additionally,instance-level and category-level contrastive losses are designed to compute the similarity between local and global features across views,optimizing the model's repre-sentation capabilities and clustering outcomes.Experimental results demonstrate that the DMVCN-ILGF model signifi-cantly outperforms existing methods across multiple multiview datasets in clustering performance.

关键词

多视图聚类/卷积神经网络/Transformer/特征融合

Key words

multi-view clustering/convolutional neural networks/Transformer/feature fusion

分类

信息技术与安全科学

引用本文复制引用

李顺勇,李嘉茗,曹付元,郑孟蛟..融合局部和全局特征的深度多视图聚类网络[J].计算机科学与探索,2025,19(8):2085-2098,14.

基金项目

国家自然科学基金(62376145,82274360) (62376145,82274360)

山西省基础研究计划(202303021221054) (202303021221054)

山西省回国留学人员科研资助项目(2024-002).This work was supported by the National Natural Science Foundation of China(62376145,82274360),the Fundamental Research Pro-gram of Shanxi Province(202303021221054),and the Research Project Supported by Shanxi Scholarship Council of China(2024-002). (2024-002)

计算机科学与探索

OA北大核心

1673-9418

访问量0
|
下载量0
段落导航相关论文