| 注册
首页|期刊导航|热力发电|机器学习在循环流化床锅炉技术中的应用进展

机器学习在循环流化床锅炉技术中的应用进展

肖红亮 柯希玮 潘帅 郎丽萍 王君峰 祁海鹰 张守玉 吕俊复 黄中

热力发电2025,Vol.54Issue(7):1-13,13.
热力发电2025,Vol.54Issue(7):1-13,13.DOI:10.19666/j.rlfd.202411246

机器学习在循环流化床锅炉技术中的应用进展

Advancements in the application of machine learning in circulating fluidized bed boiler technology

肖红亮 1柯希玮 1潘帅 2郎丽萍 3王君峰 3祁海鹰 4张守玉 1吕俊复 4黄中4

作者信息

  • 1. 北京怀柔实验室,北京 101499||怀柔实验室山西研究院,山西 太原 030032
  • 2. 中国石油大学(北京)机械与储运工程学院,北京 102249
  • 3. 北京怀柔实验室,北京 101499||怀柔实验室山西研究院,山西 太原 030032||哈尔滨锅炉厂有限责任公司,黑龙江 哈尔滨 150046
  • 4. 北京怀柔实验室,北京 101499||怀柔实验室山西研究院,山西 太原 030032||清华大学能源与动力工程系,北京 100084
  • 折叠

摘要

Abstract

Circulating fluidized bed(CFB)boilers play a pivotal role in China's power generation landscape.However,the intricate combustion system within the CFB boiler furnace exhibits strong coupling characteristics,characterized by multiple parameters,variables,nonlinearity,and time-varying dynamics,posing a significant challenge for precise system modeling and prediction.Machine learning(ML),with its robust nonlinear processing capabilities and predictive performance,holds immense promise in the domain of CFB technology.This paper delves into the application of ML techniques in this field,encompassing the prediction of minimum fluidization velocity,emissions forecasting,bed pressure forecasting,bed temperature/thermal efficiency prediction,particle circulation rate prediction,reduced-order models of computational fluid dynamics(CFD)flow fields,and boiler safety control system models.The paper critically evaluates the strengths and limitations of these technologies in various scenarios,providing an insightful perspective on the opportunities and challenges faced by CFB boilers in the era of big data.Emphasizing aspects like model interpretability,enhancing generalization capabilities,improving data quality and diversity,integrating models with conventional methods,and experimental validation are crucial areas worth attention for future advancements.

关键词

燃煤锅炉/CFB锅炉/机器学习/非线性/预测

Key words

coal-fired boiler/circulating fluidized bed boiler/machine learning/nonlinearity/prediction

引用本文复制引用

肖红亮,柯希玮,潘帅,郎丽萍,王君峰,祁海鹰,张守玉,吕俊复,黄中..机器学习在循环流化床锅炉技术中的应用进展[J].热力发电,2025,54(7):1-13,13.

基金项目

怀柔实验室项目(ZD2023008A) Program of Beijing Huairou Laboratory(ZD2023008A) (ZD2023008A)

热力发电

OA北大核心

1002-3364

访问量0
|
下载量0
段落导航相关论文