| 注册
首页|期刊导航|热力发电|基于粒子群算法的燃煤CFB锅炉一氧化碳与多污染物在线减排优化

基于粒子群算法的燃煤CFB锅炉一氧化碳与多污染物在线减排优化

康子为 陈玲红 武燕燕 吴俊 徐碧涛 金杭良 曲培培

热力发电2025,Vol.54Issue(7):23-32,10.
热力发电2025,Vol.54Issue(7):23-32,10.DOI:10.19666/j.rlfd.202410228

基于粒子群算法的燃煤CFB锅炉一氧化碳与多污染物在线减排优化

Online optimization for collaborative treatment of CO and multi-pollutant emission reduction based on particle swarm optimization

康子为 1陈玲红 1武燕燕 1吴俊 2徐碧涛 3金杭良 3曲培培3

作者信息

  • 1. 浙江大学能源工程学院,浙江 杭州 310027
  • 2. 杭州杭联热电有限公司,浙江 杭州 310018
  • 3. 杭州和达能源有限公司,浙江 杭州 310018
  • 折叠

摘要

Abstract

Nowadays,circulating fluidized bed(CFB)coal-fired boilers face challenges in the process of deep peak regulation,such as high CO emission concentrations and the lack of theoretical guidance for collaborative emission reduction of multiple pollutants including NOx and SO2.Taking a 150 t/h CFB coal-fired boiler as the research object,a model for quickly predicting mass concentrations of CO,NOx and SO2 emitted from the furnace is established based on the long short-term memory(LSTM)neural network,the Attention mechanism and the XGBoost algorithm.Moreover,an online emission reduction strategy is proposed by coupling with the particle swarm optimization(PSO)algorithm.36 298 operational data points from the coal-fired boiler throughout 2023 are selected as training samples.A correlation analysis is conducted between the boiler inspection data and pollutant emission mass concentrations to determine the input parameters for the prediction model.The fitness function and boundary function are determined with the prediction model coupled with the PSO algorithm.Through the calculation of emission reduction optimization model,an online emission reduction optimization strategy for CO,NOx and SO2 mass concentrations of CFB boilers in different load ranges is proposed,and the feasibility of the algorithm in practical boiler tuning applications is evaluated.

关键词

CFB锅炉/长短时记忆神经网络/粒子群算法/CO/协同减排

Key words

CFB boiler/long short-term memory neural network/PSO algorithm/CO/multi-pollutant emission reduction

引用本文复制引用

康子为,陈玲红,武燕燕,吴俊,徐碧涛,金杭良,曲培培..基于粒子群算法的燃煤CFB锅炉一氧化碳与多污染物在线减排优化[J].热力发电,2025,54(7):23-32,10.

基金项目

浙江省"领雁"计划项目(2024C03113) Key Research and Development Program of Zhejiang Province(2024C03113) (2024C03113)

热力发电

OA北大核心

1002-3364

访问量0
|
下载量0
段落导航相关论文