| 注册
首页|期刊导航|生物医学工程研究|基于改进YOLOv8的乳腺X射线图像肿瘤分割算法

基于改进YOLOv8的乳腺X射线图像肿瘤分割算法

张凌宇 丛金玉 李翔 王苹苹 刘坤孟 司兴勇 魏本征

生物医学工程研究2025,Vol.44Issue(3):135-142,8.
生物医学工程研究2025,Vol.44Issue(3):135-142,8.DOI:10.19529/j.cnki.1672-6278.2025.03.01

基于改进YOLOv8的乳腺X射线图像肿瘤分割算法

Tumor segmentation algorithm in mammograms based on improved YOLOv8

张凌宇 1丛金玉 1李翔 1王苹苹 1刘坤孟 1司兴勇 2魏本征1

作者信息

  • 1. 山东中医药大学 医学人工智能研究中心,青岛 266112||山东中医药大学 青岛中医药科学院,青岛 266112||青岛市中医人工智能技术重点实验室,青岛 266112
  • 2. 山东中医药大学 医学人工智能研究中心,青岛 266112||青岛市中医人工智能技术重点实验室,青岛 266112
  • 折叠

摘要

Abstract

To improve the segmentation accuracy and efficiency of breast tumors under limited computing resources,we proposed a tumor segmentation algorithm for mammograms by improving the YOLOv8 model.Firstly,a feature extraction module PC-C3K2 was de-signed by pinwheel convolution(PConv)and C3K2 module to significantly expand the receptive field and reduce the number of model parameters.Secondly,the spatial channel decoupling downsampling module was utilized for downsampling,and the computational com-plexity was reduced by independently processing the spatial information and channel information.The experimental results on the IN-breast and the CBIS-DDSM datasets showed that the mAP50 value of the proposed algorithm reached 91.8%,and the number of param-eters could be reduced by 28%.The algorithm can significantly reduce the number of model parameters while improving the tumor seg-mentation accuracy of mammograms,which is of great significance for the early screening and diagnosis of breast tumors.

关键词

YOLOv8/肿瘤分割/轻量化/乳腺肿瘤/乳腺X射线图像

Key words

YOLOv8/Tumor segmentation/Lightweight/Breast tumor/Mammograms

分类

医药卫生

引用本文复制引用

张凌宇,丛金玉,李翔,王苹苹,刘坤孟,司兴勇,魏本征..基于改进YOLOv8的乳腺X射线图像肿瘤分割算法[J].生物医学工程研究,2025,44(3):135-142,8.

基金项目

国家自然科学基金项目(62372280,62402297) (62372280,62402297)

山东省自然科学基金项目(2023QF094,2024MF139) (2023QF094,2024MF139)

青岛市科技惠民示范专项(23-2-8-smjk-2-nsh) (23-2-8-smjk-2-nsh)

齐鲁健康与卫生领军人才计划项目 ()

山东省青年科技人才托举工程 ()

山东中医药大学科学研究基金重点项目. ()

生物医学工程研究

1672-6278

访问量0
|
下载量0
段落导航相关论文