| 注册
首页|期刊导航|生物医学工程研究|基于机器学习的脓毒症实时预测模型的构建与综合可解释性分析

基于机器学习的脓毒症实时预测模型的构建与综合可解释性分析

李剑 张明伟 张天逸

生物医学工程研究2025,Vol.44Issue(3):143-149,7.
生物医学工程研究2025,Vol.44Issue(3):143-149,7.DOI:10.19529/j.cnki.1672-6278.2025.03.02

基于机器学习的脓毒症实时预测模型的构建与综合可解释性分析

Construction and comprehensive explainability analysis of real-time sepsis prediction model based on machine learning

李剑 1张明伟 2张天逸2

作者信息

  • 1. 上海交通大学医学院附属仁济医院,上海 200127||上海介入医疗器械工程技术研究中心,上海 200093
  • 2. 上海介入医疗器械工程技术研究中心,上海 200093||上海理工大学 健康科学与工程学院,上海 200093
  • 折叠

摘要

Abstract

Aiming at the problems of poor real-time and interpretability of sepsis prediction model based on machine learning,we designed a sepsis real-time prediction model with high timeliness and clinical explainability.Among them,the real-time prediction module could quickly obtain the 3 h dynamic feature sequence of non-invasive physiological indicators,and calculated the mean,standard deviation and end value.The interpretation module introduced Shapley additive interpretation method(TreeSHAP)based on tree structure,which could comprehensively improve the interpretability of the real-time prediction model of sepsis from the perspective of single prediction and global interpretation.The result showed that the accuracy,sensitivity and area under the curve of the sepsis real-time prediction model reached 0.71(95%CI,0.69~0.73),0.71(95%CI,0.70~0.73)and 0.76(95%CI,0.75~0.77),respec-tively.This model can not only provide real-time dynamic early warning for sepsis in critically ill patients,but also help clinicians deeply understand the generated details and the overall logic of the model,improve the clinical credibility of the model,and offer sup-port for clinical decision-making.

关键词

脓毒症/实时预测/可解释性分析/机器学习/动态预警

Key words

Sepsis/Real-time prediction/Explainability analysis/Machine learning/Dynamic early warning

分类

医药卫生

引用本文复制引用

李剑,张明伟,张天逸..基于机器学习的脓毒症实时预测模型的构建与综合可解释性分析[J].生物医学工程研究,2025,44(3):143-149,7.

生物医学工程研究

1672-6278

访问量0
|
下载量0
段落导航相关论文