水科学与水工程2025,Vol.18Issue(2):177-186,10.DOI:10.1016/j.wse.2025.01.002
Reservoir water level prediction using combined CEEMDAN-FE and RUN-SVM-RBFNN machine learning algorithms
Reservoir water level prediction using combined CEEMDAN-FE and RUN-SVM-RBFNN machine learning algorithms
摘要
关键词
Time series/Environmental variable/Reservoir water level/Data decomposition/Optimization/ForecastingKey words
Time series/Environmental variable/Reservoir water level/Data decomposition/Optimization/Forecasting引用本文复制引用
Lan-ting Zhou,Guan-lin Long,Can-can Hu,Kai Zhang..Reservoir water level prediction using combined CEEMDAN-FE and RUN-SVM-RBFNN machine learning algorithms[J].水科学与水工程,2025,18(2):177-186,10.基金项目
This work was supported by the National Key R&D Program of China(Grant No.2022YFC3005401)and the National Natural Science Foundation of China(Grant No.52239009). (Grant No.2022YFC3005401)