| 注册
首页|期刊导航|水科学与水工程|Reservoir water level prediction using combined CEEMDAN-FE and RUN-SVM-RBFNN machine learning algorithms

Reservoir water level prediction using combined CEEMDAN-FE and RUN-SVM-RBFNN machine learning algorithms

Lan-ting Zhou Guan-lin Long Can-can Hu Kai Zhang

水科学与水工程2025,Vol.18Issue(2):177-186,10.
水科学与水工程2025,Vol.18Issue(2):177-186,10.DOI:10.1016/j.wse.2025.01.002

Reservoir water level prediction using combined CEEMDAN-FE and RUN-SVM-RBFNN machine learning algorithms

Reservoir water level prediction using combined CEEMDAN-FE and RUN-SVM-RBFNN machine learning algorithms

Lan-ting Zhou 1Guan-lin Long 1Can-can Hu 2Kai Zhang3

作者信息

  • 1. College of Water Conservancy and Hydropower Engineering,Hohai University,Nanjing 210098,China
  • 2. College of Water Conservancy and Hydropower Engineering,Hohai University,Nanjing 210098,China||Jianghe Anlan Engineering Consulting Co.,Ltd.,Zhengzhou 450003,China
  • 3. Nanjing Hydraulic Research Institute,Nanjing 210029,China
  • 折叠

摘要

关键词

Time series/Environmental variable/Reservoir water level/Data decomposition/Optimization/Forecasting

Key words

Time series/Environmental variable/Reservoir water level/Data decomposition/Optimization/Forecasting

引用本文复制引用

Lan-ting Zhou,Guan-lin Long,Can-can Hu,Kai Zhang..Reservoir water level prediction using combined CEEMDAN-FE and RUN-SVM-RBFNN machine learning algorithms[J].水科学与水工程,2025,18(2):177-186,10.

基金项目

This work was supported by the National Key R&D Program of China(Grant No.2022YFC3005401)and the National Natural Science Foundation of China(Grant No.52239009). (Grant No.2022YFC3005401)

水科学与水工程

1674-2370

访问量3
|
下载量0
段落导航相关论文