| 注册
首页|期刊导航|水科学与水工程|Quantification of backwater effect in Jingjiang Reach due to confluence with Dongting Lake using a machine learning model

Quantification of backwater effect in Jingjiang Reach due to confluence with Dongting Lake using a machine learning model

Hai-xin Shang Jun-qiang Xia Chun-hong Hu Mei-rong Zhou Shan-shan Deng

水科学与水工程2025,Vol.18Issue(2):187-199,13.
水科学与水工程2025,Vol.18Issue(2):187-199,13.DOI:10.1016/j.wse.2025.02.002

Quantification of backwater effect in Jingjiang Reach due to confluence with Dongting Lake using a machine learning model

Quantification of backwater effect in Jingjiang Reach due to confluence with Dongting Lake using a machine learning model

Hai-xin Shang 1Jun-qiang Xia 1Chun-hong Hu 2Mei-rong Zhou 1Shan-shan Deng1

作者信息

  • 1. State Key Laboratory of Water Resources Engineering and Management,Wuhan University,Wuhan 430072,China
  • 2. State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin,China Institute of Water Resources and Hydropower Research,Beijing 100048,China
  • 折叠

摘要

关键词

Backwater effect/Stage-discharge relationship/Machine learning model/Dongting Lake confluence/Jingjiang reach

Key words

Backwater effect/Stage-discharge relationship/Machine learning model/Dongting Lake confluence/Jingjiang reach

引用本文复制引用

Hai-xin Shang,Jun-qiang Xia,Chun-hong Hu,Mei-rong Zhou,Shan-shan Deng..Quantification of backwater effect in Jingjiang Reach due to confluence with Dongting Lake using a machine learning model[J].水科学与水工程,2025,18(2):187-199,13.

基金项目

The work was supported by the National Key Research and Development Program of China(Grant No.2023YFC3209504),the National Natural Sci-ence Foundation of China(Grants No.U2040215 and 52479075),and the Natural Science Foundation of Hubei Province(Grant No.2021CFA029). (Grant No.2023YFC3209504)

水科学与水工程

1674-2370

访问量0
|
下载量0
段落导航相关论文