| 注册
首页|期刊导航|水利学报|考虑库水位和温度变化滞后效应的混凝土坝渗流预测模型研究

考虑库水位和温度变化滞后效应的混凝土坝渗流预测模型研究

陈旭东 蓝婷婷 胡少伟 徐颖 郭进军 顾冲时

水利学报2025,Vol.56Issue(7):862-873,12.
水利学报2025,Vol.56Issue(7):862-873,12.DOI:10.13243/j.cnki.slxb.20240276

考虑库水位和温度变化滞后效应的混凝土坝渗流预测模型研究

Research on the predictive model for seepage in concrete dams considering the hysteresis effects of reservoir water level and temperature variations

陈旭东 1蓝婷婷 2胡少伟 2徐颖 2郭进军 2顾冲时3

作者信息

  • 1. 郑州大学水利与交通学院,河南郑州 450001||国家大坝安全工程技术研究中心,湖北武汉 430010
  • 2. 郑州大学水利与交通学院,河南郑州 450001
  • 3. 水灾害防御全国重点实验室,江苏南京 210098
  • 折叠

摘要

Abstract

Seepage behavior is a comprehensive reflection of the interaction between external environmental loads,such as reservoir water level and temperature,and the internal anti-seepage and drainage structures.However,there is no effective qualification method at present for the hysteresis effect of reservoir water level and temperature change on seepage.This study aims to explore the law of hysteresis effect,develop a quantitative expression of the hysteresis effect,and establish a seepage prediction model accordingly.The Bayesian Vector Autoregression(BVAR)model was firstly used to analyze the hysteresis process of reservoir water level and temperature on seepage flow,quantita-tively representing the components of reservoir water level and temperature influence.Secondly,to effectively charac-terize the non-linear mapping relationship between seepage and influencing factors,the Attention Mechanism(AM)was used to dynamically adjust influence weights of seepage input factors,and the Bidirectional Gated Recurrent Unit(BiGRU)was strengthened to screen key information.The Sparrow Search Algorithm(SSA)was introduced to improve global search and adaptive performance,establishing AM-SSA-BiGRU model for seepage prediction of con-crete dams.The case study demonstrates that the BVAR method can reflect the hysteresis process of reservoir water level and temperature effects on seepage.The AM-SSA-BiGRU prediction model effectively captures the seepage trend with high accuracy and robustness,which provides a novel approach for a deeper understanding of the evolution of seepage patterns and performance prediction of concrete dams.

关键词

混凝土坝/渗流性态/滞后效应/AM-SSA-BiGRU预测模型/贝叶斯向量自回归

Key words

concrete dams/seepage behavior/hysteresis effect/AM-SSA-BiGRU prediction model/Bayesian vector autoregression

分类

建筑与水利

引用本文复制引用

陈旭东,蓝婷婷,胡少伟,徐颖,郭进军,顾冲时..考虑库水位和温度变化滞后效应的混凝土坝渗流预测模型研究[J].水利学报,2025,56(7):862-873,12.

基金项目

国家重点研发计划项目(2022YFC3004402) (2022YFC3004402)

国家自然科学基金项目(U2040224) (U2040224)

河南省青年骨干教师培养计划(2024GGJS007) (2024GGJS007)

河南省自然科学基金项目(232300421194) (232300421194)

"一带一路"水与可持续发展基金项目(U2021nkms06) (U2021nkms06)

国家大坝安全工程技术研究中心基金项目(CX2022B05) (CX2022B05)

水利学报

OA北大核心

0559-9350

访问量0
|
下载量0
段落导航相关论文