| 注册
首页|期刊导航|西安科技大学学报|基于ResNet-UNet模型的DAS矸石浆体充填堵管监测技术

基于ResNet-UNet模型的DAS矸石浆体充填堵管监测技术

柴敬 赵鹏翔 王梓名 马晨阳 张丁丁 李至 周森 秋丰岐 吴玉意 冀汶莉

西安科技大学学报2025,Vol.45Issue(4):650-662,13.
西安科技大学学报2025,Vol.45Issue(4):650-662,13.DOI:10.13800/j.cnki.xakjdxxb.2025.0402

基于ResNet-UNet模型的DAS矸石浆体充填堵管监测技术

DAS gangue slurry filling pipe blockage monitoring technology based on ResNet-UNet model

柴敬 1赵鹏翔 2王梓名 3马晨阳 3张丁丁 1李至 3周森 3秋丰岐 4吴玉意 5冀汶莉1

作者信息

  • 1. 西安科技大学能源与矿业工程学院,陕西西安 710054||西安科技大学西部矿井开采及灾害防治教育部重点实验室,陕西西安 710054
  • 2. 西安科技大学安全科学与工程学院,陕西西安 710054
  • 3. 西安科技大学能源与矿业工程学院,陕西西安 710054
  • 4. 西安科技大学能源与矿业工程学院,陕西西安 710054||中煤能源研究院有限责任公司,陕西西安 710054
  • 5. 中煤能源研究院有限责任公司,陕西西安 710054
  • 折叠

摘要

Abstract

The coal gangue slurry transportation pipeline is prone to issues such as blockage and corro-sion during the transportation process.At present,precise positioning still faces huge challenges in ad-dressing the blockage problem in slurry pipeline transportation.A method combining image noise re-duction with a ResNet-UNet composite network was proposed for monitoring and identifying blockage points,using Distributed Acoustic Sensing as the monitoring technique;In order to evaluate the pro-posed solution,a 15.14 meter ring pipe model was constructed,and a grouting blockage simulation test was conducted.The results demonstrate that:Compared with traditional UNet and ResNet models,the ResNet-UNet network can accurately identify blockage point images while effectively mitigating the is-sue of gradient explosion,the blockage location accuracy reaches 97.83%,with a precision of 97.76%,a recall rate of 94.80%,and an Fl score of 0.958 9.This study successfully addresses the noise processing challenges associated with the high sensitivity of DAS-based monitoring,significantly improving the accuracy of blockage point positioning within the scope of comprehensive coal gangue pipeline monitoring,it provides an intelligent and precise solution for monitoring coal gangue slurry transportation pipelines and identifying blockage points.

关键词

分布式声波传感技术/矸石浆体管道输送/降噪算法/ResNet-UNet模型/图像识别/堵塞定位

Key words

Distributed Acoustic Sensing/gangue slurry pipeline transportation/noise reduction algo-rithms/ResNet-UNet model/image recognition/blockage localization

分类

矿业与冶金

引用本文复制引用

柴敬,赵鹏翔,王梓名,马晨阳,张丁丁,李至,周森,秋丰岐,吴玉意,冀汶莉..基于ResNet-UNet模型的DAS矸石浆体充填堵管监测技术[J].西安科技大学学报,2025,45(4):650-662,13.

基金项目

国家自然科学基金项目(52474147) (52474147)

陕西省秦创原科学家+工程师队伍项目(2023KXJ-144) (2023KXJ-144)

西安市秦创原"科学家+工程师"团队建设项目(23KGDW0027-2022) (23KGDW0027-2022)

西安科技大学学报

OA北大核心

1672-9315

访问量0
|
下载量0
段落导航相关论文