| 注册
首页|期刊导航|自动化学报|工业外观检测中的图像扩增方法综述

工业外观检测中的图像扩增方法综述

魏静 史庆丰 沈飞 张正涛 陶显 罗惠元

自动化学报2025,Vol.51Issue(7):1423-1462,40.
自动化学报2025,Vol.51Issue(7):1423-1462,40.DOI:10.16383/j.aas.c240139

工业外观检测中的图像扩增方法综述

A Review of Image Augmentation Methods in Industrial Cosmetic Inspection

魏静 1史庆丰 1沈飞 2张正涛 2陶显 2罗惠元3

作者信息

  • 1. 中国科学院自动化研究所工业视觉智能装备技术工程实验室 北京 100190||中国科学院大学人工智能学院 北京 100049
  • 2. 中国科学院自动化研究所工业视觉智能装备技术工程实验室 北京 100190||中国科学院大学人工智能学院 北京 100049||中科慧远视觉技术(洛阳)有限公司 洛阳 471000
  • 3. 中国科学院自动化研究所工业视觉智能装备技术工程实验室 北京 100190
  • 折叠

摘要

Abstract

Image augmentation is a commonly used data processing method in industrial cosmetic inspection,which improves the generalization of detection models and prevents overfitting.Based on the different sources of augment-ation results,current industrial image augmentation methods are categorized into traditional transformation-based and model generation-based.The former includes image space-based and feature space-based methods.The latter is classified into unconditional,low-dimensional conditional,and image conditional methods based on different input conditional information of models.The principles,application effects,advantages,and disadvantages of related methods are analyzed,focusing on model generation-based augmentation methods such as those based on generat-ive adversarial networks and diffusion models.Furthermore,the relevant works on the three types of model genera-tion-based methods are categorized according to the type of annotations for augmentation results and the technical characteristics of the methods.A multidimensional table is used to elaborate on the research details of various methods,followed by comprehensive analyses of their base models,evaluation metrics,and augmentation perform-ance.Finally,the paper summarizes the current challenges in industrial image augmentation and provides an out-look on future development directions.

关键词

图像扩增/图像生成/生成对抗网络/扩散模型/表面缺陷检测/计算机视觉

Key words

Image augmentation/image generation/generative adversarial networks/diffusion models/surface de-fect inspection/computer vision

引用本文复制引用

魏静,史庆丰,沈飞,张正涛,陶显,罗惠元..工业外观检测中的图像扩增方法综述[J].自动化学报,2025,51(7):1423-1462,40.

基金项目

国家重点研发计划项目(2022YFB3303800),北京市自然科学基金-小米创新联合基金(L243018),中国科学院青年创新促进会(2020139)资助Supported by National Key Research and Development Pro-gram of China(2022YFB3303800),Beijing Municipal Natural Science Foundation-Xiaomi Joint Innovation Fund of China(L243018),and Youth Innovation Promotion Association of Chinese Academy of Sciences(2020139) (2022YFB3303800)

自动化学报

OA北大核心

0254-4156

访问量0
|
下载量0
段落导航相关论文