| 注册
首页|期刊导航|郑州大学学报(工学版)|基于多视图融合和2.5D U-Net的海马体图像分割

基于多视图融合和2.5D U-Net的海马体图像分割

陈立伟 彭逸飞 余仁萍 孙源呈

郑州大学学报(工学版)2025,Vol.46Issue(5):26-34,9.
郑州大学学报(工学版)2025,Vol.46Issue(5):26-34,9.DOI:10.13705/j.issn.1671-6833.2025.02.013

基于多视图融合和2.5D U-Net的海马体图像分割

Hippocampus Image Segmentation Based on Multi-view Fusion and 2.5D U-Net

陈立伟 1彭逸飞 1余仁萍 1孙源呈1

作者信息

  • 1. 郑州大学 电气与信息工程学院,河南 郑州 450001
  • 折叠

摘要

Abstract

Aiming at the problem in existing methods of automatic segmentation of hippocampus image,which can not make good use of the context information,might lead to the difficulty in improving the segmentation accuracy and large memory consumption in the process of training and detection,a new model called MVF-2.5D U-Net based on multi-view fusion and 2.5D U-Net was introduced.Firstly,this model improved the 2D U-Net by incorpo-rating a Triplet Attention module and adjusting the depth of the network.Secondly,the traditional single-slice input was replaced by a three-channel 2.5D image composed of adjacent slices.Finally,a volume fusion network was constructed to replace the conventional majority voting scheme.This study was validated by cross-validation on the HarP dataset.The experimental results showed that the average Dice coefficient and Hausdorff distance of the model on the hippocampus image segmentation task were 0.902 and 3.02,respectively,the accuracy and stability was better than the traditional U-Net model and comparison algorithm,and it was also suitable for the resource-con-strained situation,which proved that the proposed model could achieve hippocampus segmentation on MRI more ef-fectively.

关键词

海马体图像分割/卷积神经网络/U-Net/Triplet Attention/注意力机制/体积融合网络

Key words

hippocampus image segmentation/CNN/U-Net/Triplet Attention/attention mechanism/volume fu-sion network

分类

信息技术与安全科学

引用本文复制引用

陈立伟,彭逸飞,余仁萍,孙源呈..基于多视图融合和2.5D U-Net的海马体图像分割[J].郑州大学学报(工学版),2025,46(5):26-34,9.

基金项目

国家自然科学基金资助项目(62303425) (62303425)

河南省科技攻关项目(242102311015) (242102311015)

河南省重点研发专项项目(231111211600) (231111211600)

郑州大学学报(工学版)

OA北大核心

1671-6833

访问量0
|
下载量0
段落导航相关论文