| 注册
首页|期刊导航|郑州大学学报(工学版)|基于改进YOLOv5s干扰跳频信号调制识别

基于改进YOLOv5s干扰跳频信号调制识别

张海宾 魏洪基 王超 向长波 杨明洋 李晓龙

郑州大学学报(工学版)2025,Vol.46Issue(5):43-50,8.
郑州大学学报(工学版)2025,Vol.46Issue(5):43-50,8.DOI:10.13705/j.issn.1671-6833.2025.05.008

基于改进YOLOv5s干扰跳频信号调制识别

Modulation Recognition of Frequency Hopping Signal under Interference Based on Improved YOLOv5s

张海宾 1魏洪基 1王超 2向长波 3杨明洋 3李晓龙4

作者信息

  • 1. 西安电子科技大学 杭州研究院,浙江 杭州 311200
  • 2. 西安电子科技大学 通信工程学院,陕西 西安 710126
  • 3. 中电科思仪科技有限公司,山东 青岛 266555
  • 4. 北京控制与电子技术研究所,北京 100038
  • 折叠

摘要

Abstract

In complex electromagnetic environments,interference signals can severely degrade the detection and recognition performance of frequency-hopping signals.To address issues of false detection,missed detection,and over-detection in traditional methods,in this study an improved time-frequency diagram-based signal detection and recognition algorithm was proposed by modifying the YOLOv5s network.Firstly,a composite dataset containing fre-quency hopping signals+interference signals was constructed,comprising 4 modulation types of frequency hopping signals and 6 interference types,with 300 high-resolution time-frequency diagram samples generated for each com-bination(totaling 7 200 groups).Secondly,considering the similar features between interference and signals in time-frequency diagrams,and recognizing that the frequency variation pattern of hopping signals could make back-ground information around signals crucial for differentiation,a context hierarchy module was proposed to hierar-chically process background information.This module employed depthwise separable convolution to extract sur-rounding background features and utilized a gated aggregation mechanism to perform weighted fusion of background information and signal features,thereby generating more discriminative composite features.Finally,the backbone network of YOLOv5s was modified by integrating the context hierarchy module and gated aggregation mechanism to develop an improved frequency hopping signal detector.Simulation results showed that compared with the original YOLOv5s network,the proposed method achieved 15.9 percentage points improvement in recall rate R,8.9 per-centage points enhancement in mean average precision mAP@0.5∶0.95,and 9 percentage points increase in F1,while significantly reducing false and missed detection occurrences.

关键词

跳频信号/信号检测/信号识别/干扰信号/YOLOv5s

Key words

frequency hopping signal/signal detection/signal recognition/interference signal/YOLOv5s

分类

信息技术与安全科学

引用本文复制引用

张海宾,魏洪基,王超,向长波,杨明洋,李晓龙..基于改进YOLOv5s干扰跳频信号调制识别[J].郑州大学学报(工学版),2025,46(5):43-50,8.

基金项目

国防基础科研计划资助(JCKY2021608B001) (JCKY2021608B001)

郑州大学学报(工学版)

OA北大核心

1671-6833

访问量0
|
下载量0
段落导航相关论文