| 注册
首页|期刊导航|郑州大学学报(工学版)|基于Transformer多元注意力的钢材表面缺陷视觉检测

基于Transformer多元注意力的钢材表面缺陷视觉检测

韩慧健 邢怀宇 张云峰 张锐

郑州大学学报(工学版)2025,Vol.46Issue(5):69-76,8.
郑州大学学报(工学版)2025,Vol.46Issue(5):69-76,8.DOI:10.13705/j.issn.1671-6833.2025.05.009

基于Transformer多元注意力的钢材表面缺陷视觉检测

Visual Detection of Steel Surface Defects Based on Transformer and Multi-attention

韩慧健 1邢怀宇 1张云峰 1张锐1

作者信息

  • 1. 山东财经大学 计算机科学与技术学院,山东 济南 250014
  • 折叠

摘要

Abstract

Addressing the challenges posed by the varying scales of steel surface defects and the limited multi-scale feature processing capabilitied and accuracy of existing detection algorithms,in this study a steel surface defect de-tection method that integrates hybrid sampling and multi-attention collaboration was proposed.Firstly,an efficient channel feature extraction backbone was constructed to emphasize defect feature extraction against the complex background of steel surfaces.Secondly,a dual-attention collaborative feature pyramid was introduced to expand the network's receptive field,thereby enhancing the capture of multi-scale defect features and improving the detection performance for small targets.Finally,a Transformer-based hybrid sampling strategy was designed to dynamically perceive defect regions,thereby boosting the overall detection performance of the model.Experimental comparisons on the NEU-DET dataset revealed that,compared to the baseline DETR algorithm,the improved algorithm achieved a 6.1 percentage point increase in mean average precision,reaching 81.4%,thereby enhancing the model's accu-racy in detecting steel surface defects.Additionally,with a detection speed of 44.2 frame/s,the proposed algo-rithm strikes a commendable balance between detection speed and performance.

关键词

缺陷检测/注意力机制/Transformer/混合采样/DETR

Key words

defect detection/attention mechanism/Transformer/hybrid sampling/DETR

分类

信息技术与安全科学

引用本文复制引用

韩慧健,邢怀宇,张云峰,张锐..基于Transformer多元注意力的钢材表面缺陷视觉检测[J].郑州大学学报(工学版),2025,46(5):69-76,8.

基金项目

国家自然科学基金资助项目(61972227) (61972227)

山东省自然科学基金青年基金资助项目(ZR2023QF161) (ZR2023QF161)

郑州大学学报(工学版)

OA北大核心

1671-6833

访问量0
|
下载量0
段落导航相关论文