| 注册
首页|期刊导航|Intelligent Oncology|Assessing quantitative performance and expert review of multiple deep learning-based frameworks for computed tomography-based abdominal organ auto-segmentation

Assessing quantitative performance and expert review of multiple deep learning-based frameworks for computed tomography-based abdominal organ auto-segmentation

Udbhav S.Ram Joel A.Pogue Michael Soike Neil T.Pfister Rojymon Jacob Carlos E.Cardenas

Intelligent Oncology2025,Vol.1Issue(2):P.160-171,12.
Intelligent Oncology2025,Vol.1Issue(2):P.160-171,12.DOI:10.1016/j.intonc.2025.03.003

Assessing quantitative performance and expert review of multiple deep learning-based frameworks for computed tomography-based abdominal organ auto-segmentation

Udbhav S.Ram 1Joel A.Pogue 1Michael Soike 1Neil T.Pfister 1Rojymon Jacob 1Carlos E.Cardenas1

作者信息

  • 1. Department of Radiation Oncology,The University of Alabama at Birmingham,Birmingham AL 35233,United States
  • 折叠

摘要

关键词

AutoML/Segmentation/Radiation oncology/nnU-Net/Auto3DSeg

分类

医药卫生

引用本文复制引用

Udbhav S.Ram,Joel A.Pogue,Michael Soike,Neil T.Pfister,Rojymon Jacob,Carlos E.Cardenas..Assessing quantitative performance and expert review of multiple deep learning-based frameworks for computed tomography-based abdominal organ auto-segmentation[J].Intelligent Oncology,2025,1(2):P.160-171,12.

基金项目

funding from the University of Alabama at Birmingham,the National Institutions of Health/National Cancer Institute Award(LRP0000018407) (LRP0000018407)

National Center for Advancing Translational Sciences(5KL2TR003097-05). (5KL2TR003097-05)

Intelligent Oncology

2950-2616

访问量1
|
下载量0
段落导航相关论文