首页|期刊导航|Computer Modeling in Engineering & Sciences|A Hybrid Wasserstein GAN and Autoencoder Model for Robust Intrusion Detection in IoT
Computer Modeling in Engineering & Sciences2025,Vol.143Issue(6):P.3899-3920,22.DOI:10.32604/cmes.2025.064874
A Hybrid Wasserstein GAN and Autoencoder Model for Robust Intrusion Detection in IoT
摘要
关键词
Autoencoder/cybersecurity/generative adversarial network/Internet of Things/intrusion detection system分类
信息技术与安全科学引用本文复制引用
Mohammed S.Alshehri,Oumaima Saidani,Wajdan Al Malwi,Fatima Asiri,Shahid Latif,Aizaz Ahmad Khattak,Jawad Ahmad..A Hybrid Wasserstein GAN and Autoencoder Model for Robust Intrusion Detection in IoT[J].Computer Modeling in Engineering & Sciences,2025,143(6):P.3899-3920,22.基金项目
the Deanship of Research and Graduate Studies at King Khalid University for funding this work through Large Group Project under grant number(RGP.2/245/46) (RGP.2/245/46)
funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2025R760) (PNURSP2025R760)
Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.The research team thanks the Deanship of Graduate Studies and Scientific Research at Najran University for supporting the research project through the Nama’a program,with the project code NU/GP/SERC/13/352-1。 ()