| 注册
首页|期刊导航|电讯技术|基于深度强化学习的工业SDN网络切片资源分配

基于深度强化学习的工业SDN网络切片资源分配

张晓莉 雷雨声 刘夏茜 王斌

电讯技术2025,Vol.65Issue(8):1221-1230,10.
电讯技术2025,Vol.65Issue(8):1221-1230,10.DOI:10.20079/j.issn.1001-893x.240520002

基于深度强化学习的工业SDN网络切片资源分配

Industrial SDN Network Slicing Resource Allocation Based on Deep Reinforcement Learning

张晓莉 1雷雨声 1刘夏茜 1王斌1

作者信息

  • 1. 西安科技大学 通信与信息工程学院,西安 710600
  • 折叠

摘要

Abstract

To address the issue of low network resource utilization caused by the diversity of business requirements and differences in quality of service(QoS)demands in industrial Interhot of Thiugs(IoT),a network slicing resource allocation strategy based on deep reinforcement learning is proposed.This strategy uses deep reinforcement learning to optimize the admission control of network slicing resource allocation.It processes resource requests within a specific time window through an agent and dynamically allocates resources based on the QoS requirements of different network slices and the admission results of the requests.Experimental results show that the proposed strategy improves network revenue,resource utilization,and acceptance rate by 8.33%,9.84%,and 8.57%,respectively,compared with the baseline algorithm.The strategy can improve the efficiency and performance of the entire network while ensuring service quality.

关键词

工业物联网(IIOT)/软件定义网络/网络切片/资源分配/准入控制/深度强化学习

Key words

industrinal IoT(IIOT)/software-defined networking/network slicing/resource allocation/admission control/deep reinforcement learning

分类

信息技术与安全科学

引用本文复制引用

张晓莉,雷雨声,刘夏茜,王斌..基于深度强化学习的工业SDN网络切片资源分配[J].电讯技术,2025,65(8):1221-1230,10.

基金项目

国家自然科学基金资助项目(U19B2015) (U19B2015)

电讯技术

OA北大核心

1001-893X

访问量0
|
下载量0
段落导航相关论文