首页|期刊导航|防灾减灾工程学报|改进U-Net模型的隧道掌子面图像语义分割研究

改进U-Net模型的隧道掌子面图像语义分割研究OA北大核心

Semantic Segmentation of Tunnel Handheld Noodle Rock Mass Structure Images with Improved U-Net Model

中文摘要英文摘要

隧道掌子面岩体结构是判断岩土工程地质条件、制定施工和支护方案、预防塌方及涌水等事故的直观依据.将U-Net模型应用于掌子面岩体结构图像分割与识别时,下采样过程中缩小图像尺寸会导致岩体部分细节信息丢失,上采样过程中将低层特征传递到高层的跳跃连接导致特征映射过大.因此,提出加入空洞空间卷积池化金字塔模块ASPP和卷积注意力模块CBAM的改进U-Net模型.在U-Net模型的跳跃连接过程中加ASPP,利用不同膨胀率的空洞卷积捕获不同尺度的上下文信息,融合不同感受野的信息,从而更全面的理解图像内容;U-Net模型的下采样过程中加入CBAM,使网络模型更加关注有用的特征,从而增强特征的表达能力.实验结果表明,改进的网络模型相较于原始U-Net模型分割和识别性能有显著提升,在某隧道工程掌子面岩体图像数据集上Precision达到93.04%,mIoU达到74.98%,mPA达到78.89%.

The structural characteristics of the rock mass exposed at the tunnel face provide a direct ba-sis for assessing geotechnical conditions,formulating construction and support strategies,and mitigat-ing risks of accidents such as collapses and water inrush.When applying the U-Net model to the seg-mentation and recognition of tunnel face rock mass structure images,the downsampling process can lead to the loss of fine details in the rock mass,while the skip connections used during upsampling to transfer low-level features to higher levels may cause excessively large feature maps.To address these issues,an improved U-Net model is proposed by incorporating the Atrous Spatial Pyramid Pooling(ASPP)module and the Convolutional Block Attention Module(CBAM).Specifically,the ASPP is integrated into the skip connections of the U-Net model to capture multi-scale contextual information through atrous convolutions with varying dilation rates,enabling the fusion of features from diverse re-ceptive fields for a more comprehensive understanding of image content.Concurrently,the CBAM is embedded into the downsampling process of the U-Net model to enhancing the network focus more on useful features,thereby enhancing the representation capability of the extracted features.Experimental results demonstrate that the improved network model significantly outperforms the original U-Net in both segmentation and recognition performance.Evaluated on a tunnel face rock mass image dataset from a specific engineering project,the improved model achieves a Precision of 93.04%,mean Inter-section over Union(mIoU)of 74.98%,and a mean Pixel Accuracy(mPA)of 78.89%.

陈登峰;程静;赵蕾;何拓航

西安建筑科技大学 建筑设备科学与工程学院,陕西 西安 710000西安建筑科技大学 建筑设备科学与工程学院,陕西 西安 710000西安建筑科技大学 建筑设备科学与工程学院,陕西 西安 710000西安建筑科技大学 建筑设备科学与工程学院,陕西 西安 710000

交通工程

隧道掌子面图像语义分割卷积注意力模块空洞空间卷积池化金字塔模块

tunnel palm-leaf noodlesimage semantic segmentationconvolutional attention moduledilated spatial pyramid pooling module

《防灾减灾工程学报》 2025 (4)

776-783,8

陕西省自然科学基础研究计划面上项目(2024JC-YBMS-286)、西安市科技计划项目(2023JH-GXRC-0216,2024JH-KGDW-0112)、前沿交叉领域培育专项项目(X20230072)资助

10.13409/j.cnki.jdpme.20231108005

评论