| 注册
首页|期刊导航|航空工程进展|基于物理知识驱动的敏感性分析及分区代理模型优化方法

基于物理知识驱动的敏感性分析及分区代理模型优化方法

邵梦莹 夏露 张伟 赵轲

航空工程进展2025,Vol.16Issue(4):48-62,92,16.
航空工程进展2025,Vol.16Issue(4):48-62,92,16.DOI:10.16615/j.cnki.1674-8190.2025.04.05

基于物理知识驱动的敏感性分析及分区代理模型优化方法

Sensitivity analysis and optimization method of partition surrogate model based on physical knowledge driven

邵梦莹 1夏露 1张伟 1赵轲1

作者信息

  • 1. 西北工业大学 航空学院,西安 710072||飞行器基础布局全国重点实验室,西安 710072
  • 折叠

摘要

Abstract

The problem of"dimensionality disaster"of design variable is a key technical problem that restricts the ap-plication of current agent-based optimization algorithms.In order to solve the problem of declining accuracy and poor optimization effect of surrogate model caused by dimensionality disaster problem,a sensitivity analysis parti-tion surrogate model optimization method based on physical knowledge driven is improved.The sensitivity of differ-ent partition design variables to the objective function is studied.On the basis of the sequential partition optimiza-tion,the sensitivity is taken as the order of the partition surrogate model optimization.The results show that the method can solute the high-dimensional design space into a series of low-dimensional subspaces,improve the pre-diction accuracy of surrogate model,realize the efficiency configuration,so as to realize the global search.In com-parison with traditional surrogate optimization method,the time spent on establishing the surrogate model is much lower,and the ability of surrogate optimization method to solve the high-dimensional aerodynamics design problem.

关键词

分区优化/高效全局优化方法/维数灾难/敏感性分析/代理模型精度

Key words

partition optimization/efficient global optimization method/dimensionality disaster/sensitivity analy-sis/accuracy of surrogate model

分类

航空航天

引用本文复制引用

邵梦莹,夏露,张伟,赵轲..基于物理知识驱动的敏感性分析及分区代理模型优化方法[J].航空工程进展,2025,16(4):48-62,92,16.

基金项目

飞行器基础布局全国重点实验室稳定支持项目(614220121020128) (614220121020128)

飞行器基础布局全国重点实验室基金(JBGS-2024-02,2023-JCJQ-LB-070) (JBGS-2024-02,2023-JCJQ-LB-070)

航空工程进展

1674-8190

访问量0
|
下载量0
段落导航相关论文