| 注册
首页|期刊导航|军事医学|融合语义信息与知识图谱结构信息的抗新型冠状病毒药物发现研究

融合语义信息与知识图谱结构信息的抗新型冠状病毒药物发现研究

周佳欣 张音

军事医学2025,Vol.49Issue(7):494-503,10.
军事医学2025,Vol.49Issue(7):494-503,10.DOI:10.7644/j.issn.1674-9960.2025.07.003

融合语义信息与知识图谱结构信息的抗新型冠状病毒药物发现研究

Anti-SARS-CoV-2 drugs discovery by combining semantic information with knowledge graph structural information

周佳欣 1张音1

作者信息

  • 1. 军事科学院军事医学研究院,北京 100850
  • 折叠

摘要

Abstract

Objective To propose a knowledge graph embedding model that can help discover potential anti-SARS-CoV-2 drugs from approved drugs by combining semantic information with knowledge graph structural information.Methods Potential therapeutic drugs were predicted by using the head entity prediction task in knowledge graph completion.Results Six potential drugs were predicted,including naratriptan,sumatriptan,colchicine,doxorubicin,diphenhydramine and hydrocortisone.Conclusion The combination of semantic information and knowledge graphstructural information can enhance the representation capability of a knowledge graph embedding model,and provide a novel approach to research on anti-SARS-CoV-2 drug discovery.

关键词

知识图谱补全/知识图谱嵌入/新型冠状病毒/药物发现/链接预测

Key words

knowledge graph completion/knowledge graph embedding/SARS-CoV-2/drug discovery/link prediction

分类

信息技术与安全科学

引用本文复制引用

周佳欣,张音..融合语义信息与知识图谱结构信息的抗新型冠状病毒药物发现研究[J].军事医学,2025,49(7):494-503,10.

军事医学

1674-9960

访问量0
|
下载量0
段落导航相关论文