| 注册
首页|期刊导航|解放军医学院学报|可穿戴心率变异性参数与急性期入院心衰患者NT-proBNP水平的关联性分析

可穿戴心率变异性参数与急性期入院心衰患者NT-proBNP水平的关联性分析

时颖 张秀 夏万能 张越 张庆 张政波

解放军医学院学报2025,Vol.46Issue(3):256-261,后插1,7.
解放军医学院学报2025,Vol.46Issue(3):256-261,后插1,7.DOI:10.12435/j.issn.2095-5227.2025.24112701

可穿戴心率变异性参数与急性期入院心衰患者NT-proBNP水平的关联性分析

Association between wearable heart rate variability parameters and NT-proBNP levels in acute heart failure patients

时颖 1张秀 2夏万能 1张越 1张庆 2张政波3

作者信息

  • 1. 解放军医学院,北京 100853||解放军总医院医学创新研究部,北京 100853
  • 2. 四川大学华西医院心脏内科,四川 成都 610041
  • 3. 解放军总医院医学创新研究部,北京 100853
  • 折叠

摘要

Abstract

Background Heart rate variability(HRV),an indicator of autonomic nervous system activity,is widely recognized for assessing heart failure prognosis.N-terminal pro-B-type natriuretic peptide(NT-proBNP)plays a crucial role in the diagnosis,risk stratification,and prognosis evaluation of heart failure,but its measurement relies on invasive procedures and lacks dynamic monitoring capabilities.Objective To explore the correlation between wearable HRV parameters and NT-proBNP levels and validate their feasibility as a non-invasive risk stratification tool.Methods The 24-hour wearable device physiological data and clinical indicators were collected from acute heart failure patients admitted to the Department of Cardiology,West China Hospital,Sichuan University,from January 2021 to December 2022.Post preprocessing,HRV parameters were extracted,and a threshold of 3 500 pmol/L was established for NT-proBNP levels.Spearman correlation was used to analyze the association between HRV and NT proBNP,and the efficacy of five machine learning models including Logistic Regression,K-Nearest Neighbor(KNN),Support Vector Machine(SVM),Random Forest and XGBoost to predict poor prognosis(NT proBNP≥3 500 pmol/L)was evaluated,and the characteristic contribution was quantified by the snap value.Results A total of 51 heart failure patients were included,with 87 electrocardiographic datasets collected.Among the HRV parameters,SDNN,SD2,VLF,and 7 other indexes showed significant negative correlations with NT-proBNP levels(r:-0.390 to-0.371,P<0.001).Patients with NT-proBNP≥3 500 pmol/L had significantly lower HRV parameters,including SDNN(M[IQR]:51.10[38.50-67.20]ms vs 77.95[54.45-95.50]ms,P<0.001),SD2(M[IQR]:68.30[52.90-93.90]ms vs 108.00[76.20-132.47]ms,P=0.003),VLF(M[IQR]:18.82[5.84-59.61]mHz vs 59.36[33.70-116.90]mHz,P=0.002),ULF(M[IQR]:6.30[1.99-18.02]mHz vs 18.60[10.05-34.09]mHz,P=0.001).Among the machine learning models,Logistic Regression demonstrated the best classification performance(AUC=0.830,95%CI:0.760-0.890).SHAP analysis revealed that SD2 and LF/HF contributed the most to the model's classification.Conclusion Wearable HRV parameters are significantly correlated with NT-proBNP levels and can effectively differentiate high and low NT-proBNP groups using machine learning models,offering a new strategy for non-invasive dynamic monitoring and acute decompensation risk prediction in heart failure patients.

关键词

心力衰竭/心率变异性/NT-proBNP/可穿戴设备/机器学习

Key words

heart failure/heart rate variability/NT-proBNP/wearable devices/machine learning

分类

医药卫生

引用本文复制引用

时颖,张秀,夏万能,张越,张庆,张政波..可穿戴心率变异性参数与急性期入院心衰患者NT-proBNP水平的关联性分析[J].解放军医学院学报,2025,46(3):256-261,后插1,7.

基金项目

国家自然科学基金项目(62171471) (62171471)

解放军医学院学报

2095-5227

访问量0
|
下载量0
段落导航相关论文