| 注册
首页|期刊导航|南京师大学报(自然科学版)|增强感受野特征的多尺度火灾检测方法

增强感受野特征的多尺度火灾检测方法

董可 严云洋 耿嘉雯 于永涛 王盘龙 叶翔

南京师大学报(自然科学版)2025,Vol.48Issue(4):87-95,105,10.
南京师大学报(自然科学版)2025,Vol.48Issue(4):87-95,105,10.DOI:10.3969/j.issn.1001-4616.2025.04.009

增强感受野特征的多尺度火灾检测方法

Multi-Scale Flame Detection Based on Enhanced Receptive Field Feature

董可 1严云洋 1耿嘉雯 1于永涛 1王盘龙 1叶翔1

作者信息

  • 1. 淮阴工学院计算机与软件工程学院,江苏 淮安 223003
  • 折叠

摘要

Abstract

Aiming at the problems of poor fire detection effect and weak anti-interference ability,a multi-scale fire detection method based on enhanced receptive field feature is proposed.Firstly,the Receptive-Field Attention Convolution(RFAConv)is introduced to enhance the extraction of spatial features of receptive field.Secondly,the C2fiC module is designed by combining the Inverted Residual Mobile Block(iRMB)and the Channel Prior Convolutional Attention(CPCA)mechanism to improve the ability of the model to express and fuse different scale features.Then,the shared parameter structure is adopted,and the lightweight convolution reconstruction detector is introduced to reduce the model parameters and computational complexity.Finally,the Focaler-GIoU loss function is introduced to balance the difficulty samples.The experimental results show that the number of parameters and the amount of calculation of the improved model are reduced,and the detection accuracy is higher,which can meet the detection requirements in flame detection.

关键词

火灾检测/感受野特征/注意力机制/损失函数/YOLOv8n

Key words

flame detection/receptive field feature/attention mechanism/loss function/YOLOv8n

分类

信息技术与安全科学

引用本文复制引用

董可,严云洋,耿嘉雯,于永涛,王盘龙,叶翔..增强感受野特征的多尺度火灾检测方法[J].南京师大学报(自然科学版),2025,48(4):87-95,105,10.

基金项目

国家自然科学基金资助项目(62076107)、江苏省"六大人才高峰"资助项目(2013DZXX-023). (62076107)

南京师大学报(自然科学版)

OA北大核心

1001-4616

访问量0
|
下载量0
段落导航相关论文